STA 437/1005, Fall 2008 — Assignment #1 Solutions.

Question 1: Let X, Y, and Z be independent random variables, all with the N(1,1) distribution.
Define the random variables A and B as follows:

A = X+2Y
B = X+Y+Z

Finally define C' as the random vector with A and B as components (ie, C = [A B]’).

a) What is the mean vector of C?7

See pages 75-76 of the text. We can find the expectations of A and B as
E(A)=E(X+2Y)=EX)+2E(Y)=142x1=3
EB)=EX+Y+2)=EX)+EY)+EZ)=1+1+1=3
So the expectation of C = [A B]' is [3 3]'.

b) What is the covariance matrix of C?7

See pages 15-76 of the text. We can combine the definitions of A, B, and C to give that
C=WI[XY Z], where the matriz W is defined as
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Since X, Y, and Z are independent, and all have variance 1, the covariance matrix of
(XY Z] is the identity matriz, 1. Using formula (2-45) from the text, we find that
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c) What is the conditional distribution of A given that B = 17

See pages 160-161 of the text. C = [A B]' has a multivariate normal distribution (since
A and B have normal distributions and are independent). According to Result 4.6 in the
text, the conditional distribution of A given a value for B is also normal. The mean of this
conditional distribution depends on the value of B that is conditioned on:

E(A|B=1) = E(A)+ Cov(4,B)[Cov(B)]"*(1- E(B)) = 3+3(3)71(1-3) = 1

The conditional variance of A does not depend on the particular value of B that is condi-
tioned on:

Var(A|B) = Cov(A|B) = Cov(A) — Cov(A, B)[Cov(B)|~*Cov(B, A)

’

= 5-303)713 = 2



Question 2: Suppose X is a random vector of length p with covariance matrix X x. Define
Y = QX, where @ is some p x p orthogonal matrix, and let 3y be the covariance matrix of Y.

a) Find a simple expression for Xy .
Referring again to page 76 of the text, we get that Xy = QX xQ'.

b) Suppose that e is an eigenvector of Xx with eigenvalue A. Prove that Qe is an eigenvector
of 3y, and find what eigenvalue is associated with it.

To see that Qe is an eigenvector of Xy, we multiply it by Xy, to get

v(Qe) = (QExQ)(Qe) = QEx(Q'Q)e = Q¥xe = Q(Xe) = A(Qe)

Here, we have used the fact that Q is an orthogonal matriz, so that Q~' = Q', and the fact
that e is an eigenvector of X x with eigenvalue A, so that Xxe = Ae. We see that Qe is an
eigenvector of Yy with eigenvalue .

Question 3: Recall the spectral decomposition theorem: If A is a k X k symmetric real matrix,
it is possible to find a set of k eigenvectors of A that are orthogonal and have length one, and if

e1,..., e are any such set of eigenvectors, with eigenvalues A1, ..., \g, then A = Ajeje] + -+ +
PYNIN

Use this theorem to prove that if A is a symmetric matrix with eigenvectors e1, ..., e, that
are orthogonal and have length one, with non-zero eigenvalues A1, ..., \x, then B = eje} /A +

- + ege) /A is the inverse of A. Note that although there may be several ways of proving this,
for this question you should prove it by multiplying A and B and verifying that the result is the
identity matrix, using the spectral decomposition theorem.

From the spectral decomposition theorem, A = Aiere] + -+ + Agege}., so we can write AB as
AB = {Alelell + -+ )\keke%] : {616’1/)\1 + -+ ekeﬁg)\k]
k k
= ZZ (\ieie} e]e;-/Aj)
i=17=1
k
= Z()\iei@) eiel /) + Z \ieiel e]e;/)\j)
=1 i#]
= z:)\ez eei)es/ i + 2:)\6Z eiej)es/
i#j
= 616/1 + -+ ekek

The product of sums in the first line above is equal to the sum of all the pairwise products, but
the terms in this sum for i # j are zero, since eje; = 0 when i # j (since the eigenvectors are
orthogonal. We can use the spectral decomposition theorem to see that the final result is equal to
the identity matrixz, because e1, ..., e, are eigenvectors of the identiy matriz with eigenvalues of
one (since all non-zero vectors are eigenvectors of the identity matriz with eigenvalues of one).



Question 4: The effect (if any) of air pollution on mortality has been studied for many years,
and has large implications for public policy. From the course web page,

http://www.utstat.toronto.edu/~radford/stad37

you can get a file containing daily data on weather, air pollution, and deaths in Toronto from 1992
to 1997. This data file contains 2192 lines, one per day, in time order, with each line containing
the values of 10 variables. There is also a header line at the front with the names of the variables.

The variables are as follows:

year Year, from 1992 to 1997

month Month, from 1 (January) to 12 (December)

day Day of the month, from 1 to 31

deaths Number of deaths in Toronto

pressure Average air pressure, in kilopascals

temperature Average temperature, in degrees Celcius

humidity Average relative humidity, percent

s02 Average level of sulfer dioxide, ppb

ozone Average level of ozone, ppb

pm10 Average level of 10 micron particulate matter, micrograms per cubic meter

The pm10 variable is observed on only some days, with the value for other days being set to NA.

In interpreting this data, it is important to note that the weather itself is known to have an
effect on mortality, and that the weather also has an effect on the level of pollutants (s02, ozone,
and pm10).

Read this data into R, look at it, and report any conclusions you may find about how these
variables are related, whether they have normal distributions, and how they might be transformed
to have distributions closer to normal. In your report, include a small number of plots or other
R output that justifies your conclusions.

In your report, you should also discuss to what extent this data can be regarded as a random
sample from a distribution that is of interest regarding the question of whether air pollution has
an effect on mortality.

For this assignment, you need not perform any formal statistical tests. You should just
make informal assessments based on plots and sample statistics, and using your common sense
knowledge.

This answer refers to a PDF file of plots produced using R, which is available from the course
web page, along with the R program that produced them.

Whether this data can be regarded as a random sample from a distribution of interest can be
largely discussed without even looking at the data. Our common sense knowledge tells us that
a hot day is often followed by another hot day, and similarly for other weather variables, so we
would not expect daily temperatures (and hence also things that may depend on temperature, such
as pollution and deaths) to be independent. This lack of independence will certainly be an issue
for any formal statistical tests (not done for this assignment). We also know that the weather is
different in different months, so we don’t expect a single distribution for the weather (and hence
other variables too). We might also expect that pollution levels have changed over the years. We
might be able to ignore these changes in distributions if the relationship of deaths to the other



variables stays the same, but since that is also not clear, we would really need to do an analysis
that accounts for seasonal variation and trends.

The first page of plots has boxplots for each variable other than year/month/day versus year
and versus month. These plots confirm that there are considerable differences in temperature,
humidity, and ozone for different months, and also noticable differences by month in the other
variables — deaths, pressure (variance rather than mean), so2, and pm10. Trends over the years
are less pronounced, but there seems to have been some decrease in pm10 (at least with regard to
extreme values) and some increase in ozone.

The second page of plots has scatterplots of all pairs of variables other than year/month/day.
These scatterplots show that deaths are negatively correlated with temperature, and that ozone is
positively correlated with temperature. This could cause confusion when assessing whether ozone
causes increased deaths, and indeed the correlation of deaths with ozone is -0.11, which is opposite
to what one might expect, but this may be misleading due to the correlations of deaths and ozone
with temperature.

These scatterplots also show that many pairs of variables don’t have bivariate normal distri-
butions. We can also look at the univariate distributions for each variable, using histograms and
normal QQ plots, as is done on the third and fourth page of plots. We can observe the following:

e Deaths has a right-skewed distribution. This is as expected if the count of deaths each day
to has a Poisson distribution. Theory says that taking the square root should produce a
more normal distribution (see page 192 in the text). This should be considered, though
one also needs to consider whether this transformation might cause other difficulties (eg, in
interpretation, or with regard to linearity of the relationship of death to other variables).

o Pressure seems to have close to a normal distribution.

o Temperature has a bimodal distribution. It seems pointless to try to make this more normal
by a transformation (a complex transformation would be needed, which would probably cause
other problems).

o Humidity has a left-skewed distribution. There’s really no reason to expect it to be normally-
distributed, and it may be pointless to try to make it so by a transformation.

e S02 has a right-skewed distribution. Since some values for so2 are zero, a log tranformation
would be problematic. Taking the square root might help make the distribution more normal,
but again might cause other problems.

e Ozone is also right-skewed, and again a square root (or log) transformation might make it
more normal.

o PM10 is right-skewed, and again a square root (or log) transformation might make it more
normal.

The fifth page of plots show histograms and normal QQ plots for the square oot of deaths, the
square root of so2, the square root of ozone, and the log of pm10, which show that these variables
are closer to having normal distributions after these transformations.

The sizth page shows scatterplots of all pairs of variables except year/month/day after these
transformation. Some relationships seem a bit clearer, such as the negative relationship of deaths
to ozone, and some bivariate distributions seem closer to normal (eg, sqrt ozone versus log pm10).
Some bivariate distributions are clearly not normal, however (eg, temperture versus sqrt ozone).



