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Review — Maximum Likelihood for Gaussian Mixture Models

A K-component Gaussian mixture model for real vectors models an observation

with the density function

K
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A natural idea is to estimate 7w, ur, and ¥ for £k =1,..., K by maximizing the

likelihood. Assuming that data items are independent, the log likelihood is

L(m,u, %) = > log P(alm, 1, %)
1=1

where x; is the data vector for item <.



The EM algorithm



The EM Algorithm for Gaussian Mixture Models

We could use some general purpose optimization method (eg, gradient descent) to
find the parmeters of a mixture model that maximize the likelihood (avoiding the
singular solutions with ¥; — 0). But a method known as the EM algorithm is
commonly used, because it is simple to implement, and very stable. (Though it

can unfortunately also be rather slow.)

The idea: If we knew which mixture component each data item came from,
estimating the mixing proportions and the parameters of each component
distribution would be easy. We don’t know this, but given an initial guess at the
parameters, we can probabilistically assign a component to each data item, and

then get a better estimate of the parameters based on these assignments.

This is sort of like the K-means algorithm, but in a probabilistic setting, with a

proof that the algorithm will reach a (local) maximum of the likelihood.



Details of the EM Algorthim for Gaussian Mixture Models

Here are the details of the EM algorithm for a Gaussian mixture model with >

being diagonal, with diagonal elements of a]% i

We alternate between “E” (Expectation) steps and “M” (Maximization) steps:

E Step: Using the current values of the parameters, compute the

“responsibilities” of components for data items, by applying Bayes’ Rule:
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M Step: Using the current responsibilities, re-estimate the parameters, using

weighted averages, with weights given by the responsibilities:
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We start with some initial guess at the parameter values (perhaps random), or
perhaps with some initial guess at the responsibilities (in which case we start with

an M step). We continue alternating E and M steps until there is little change.



The EM Algorithm in General

Consider model for observed data x (which might be a vector of n independent
items) that is accompanied by a latent (unobserved) z (also possibly a vector of n
independent values). A model with parameters 6 describes the joint distribution
of x and z, as P(x, z|0).

We want to estimate 8 by maximum likelihood, which means finding the 6 that

P(x|0) ZP x, z|0)

(This assumes z is discrete; if it’s continuous the sum is replaced by an integral.)

maximizes

We assume that this isn’t easy. But suppose that we can easily find the 6 that
maximizes P(x, z|f), for any known = and z. We try to use (something related to)

this capability in an iterative algorithm for maximizing P(x|f).



The EM Algorithm in General — Details

The general EM algorithm alternates these steps:

E Step: Using the current value of the parameter, 6, find the distribution, @, for

the latent z, given the observed x:
Q(z) = P(z|z,0)

M Step: Maximize the expected value of log P(x, z|f) with respect to 6, where
the expectation is with respect to the distribution () found in the E step:

§ = argmax Eg|log P(z,z|0)]
0

For many models (specifically, those in the “exponential family”), maximizing

Eg|log P(z, z|0)] will be feasible if maximizing log P(x, 2|6) for known z is feasible.



Justification of the EM algorithm

To see that the EM algorithm maximizes (at least locally) the log likelihood,

consider the following function of the distribution () over z and the parameters 6:
F(Q.0) = Eqllog P(z,210)] — Eqllog Q(2)
— log P(al0) + Egllog P(:],6)] — Eqllog Q(=)
= log P(z]0) — Eqllog(Q(2)/P(z|z,0))

The final term above is the “Kullback-Leibler (KL) divergence” between the
distribution Q(z) and the distribution P(z|z,#). One can show that this

divergence is always non-negative, and is zero only when Q(z) = P(z|x,0).
We can now justify the EM algorithm by showing that

a) The E step maximizes F'(Q, ) with respect to () — a consequence of KL
divergence being minimized when Q(z) = P(z|z,6).

b) The M step maximizes F(Q, ) with respect to § — clear since Eg[log Q(2)]
doesn’t depend on 6.

¢) The maximum of F(Q,#) occurs at a 6 that maximizes P(z|f) — if instead
P(x|0*) > P(x|0) for some 0*, then F(Q*,0%) > F(Q,0) with Q*(z) = P(z|z, 6%).



How this Translates to the Mixture Version

For the mixture example, the model parameters are 0 = (7, u, o).

We'll let the latent variables be z;,. = 1 if data item ¢ comes from component k,

and 0 otherwise.

In the E step, we find the distribution of the z;; given x; and the model
parameters. It turns out that all we actually need from this distribution is the
expected value of each z;; (same as the probability that z;; = 1), which we define

to be r;;, and find by Bayes’ Rule as shown before.
In the M step, we need to maximize EQ< > log P(x;, zz|9))
i=1

Suppose we knew the value of both z; and z; = (21, ..., 2;x) for data item i.
The log probability (dropping constant factors) for that item can be written as
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Note that all but one factor in the outer product will have the value one.

We maximize the expected value of the sum of the above for all ¢, with respect to

the distribution of z; found in the E step. We’ll see how this works out next. ..



Details of the Mixture Version of EM

Taking the expectation of the log probability of data item ¢ with respect to the
distribution of z; (denoted by @), we get
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where r;;, = Eg(z;;). To maximize the sum of the above for all ¢, we separately
K 1 n
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respect to each py;, and finally —5 Z Tik (log(ak]) + (245 — pkj) /Uk]) with
=1

respect to each o2.. This gives the algorithm presented earlier.



How Many Mixture Components Should We Use?



Non-Bayesian Ways of Setting K

If we estimate the parameters of a mixture of K distributions by maximum
likelihood, we will “overfit” if we choose K to be too big. Letting K = n is the
extreme — then every data point can have its own mixture component, which can

give it infinite probability density.

Many, many schemes have been devised for picking an appropriate value for K,

most without a convincing justification.

One plausible way is to look at performance on a validation set, with parameters

estimated from a separate estimation set (or use S-fold cross validation).
To do this, we need a measure of performance.
We could use the average log probabability of the validation observations.

Or we could use something else that reflects our actual intended use of the
results. For instance, we might intend to use a mixture model to fill in missing
covariates in a regression model, in which case we might use squared error in

prediction of left-out values from other values.



Bayesian Mixture Models

A different approach is to use a Bayesian model, in which we don’t predict using a
single estimate of the parameters. This will avoid overfitted solutions in which

each component models just one data point, infinitely well.

We need to specify a prior distributions for the parameters (eg, mean vector and

covariance matrix) of each mixture component.
We might let this prior be independent for each component.

We cannot let this prior be improper. If we do, only one component will be used,
since the prior probability of a second component having reasonable parameter

values will be zero!

We also need a prior for the mixing proportions...



A Prior for Mixing Proportions

A Bayesian mixture model needs to have a prior distribution for the mixing
proportions, m,...,Tg. One possibility is the Dirichlet distribution, which has

the following density on the simplex where 7, > 0 and ) m, = 1:
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The parameters aq,...,ax can be any positive reals.

If Z1,75,... are ii.d. given 7, with P(Z; = k) = m, the posterior distribution
after observing z1,..., z,, with n; of the z; having value 1, no having value 2, etc.

is a Dirichlet distribution with parameters a1 +ni,...,ax+ngk.
The predictive distribution for Z,.1 given Zy,..., 2, is
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Implementing Bayesian Mixture Models

Bayesian mixture models are usually implemented using Markov chain Monte

Carlo methods, which we aren’t covering in this course.

Just like the EM algorithm for maximum likelihood fitting of mixtures can
converge to a bad local maximum, a Markov chain Monte Carlo method for a
mixture model can get stuck for a long time in a local mode of the posterior

distribution — though it should get out eventually.



Choosing K Using Marginal Likelihood

We can choose among Bayesian mixture models with different numbers of

components, K, using the marginal likelihood for each value of K.

The marginal likelihood for these models is rather hard to compute, but it’s

possible.

But does this procedure make sense? Do we really believe that there is some true

(even if unknown) value of K7

Consider a mixture model for symptoms of patients, where we hope the mixture
components will represent “diseases”. Do we expect only K diseases, for some

reasonably small value of K7

As the number of patients, n, increases, we actually expect to see more and more

diseases (some of which will be quite rare).



Letting K be Infinite

We can let K go to infinity in a Bayesian mixture model with a Dirichlet prior for

T,..., T — giving what’s called a Dirichlet process mixture model.

If we use a Dirichlet prior for 7y, ..., 7 with all parameters being /K, the
limiting form of the “law of succession” for the predictive distribution of Z;,

representing which mixture component to use for item ¢, is
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where n; i, is the number of 21, ..., 2,1 that are equal to k.

So even with infinite K, behaviour is reasonable: The probability of the next

data item being associated with a new mixture component is neither O nor 1.



The Prior for Mixing Proportions as K Increases

Three random values from priors for my, ..., 7x:
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The Prior for Mixing Proportions as o Varies

Three random values from priors for my,..., 7x:

a=1, K =150: S s
Q | ’ =) || | o

a=5 K=150: ° i} g

|




