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Clustering and Mixture Models



Unsupervised Learning, Clustering, and Mixture Distributions

Recall that unsupervised learning does not focus on predicting anything in

particular, but rather tries to find “interesting” aspects of the data.

One possible informal objective is to find clusters of similar items. One possible

formal objective is modeling the probability distribution of all observed variables.

It can be useful to model a probability distribution in which variables are

dependent using latent (also called hidden) variables to express some or all of the

dependencies.

When there is one discrete latent variable, the model will express the distribution

as a mixture of distributions. The latent variable can also be seen as identifing

the cluster an item belongs to.

Example: We have data on symptoms of patients (body temperature, blood

pressure, etc.). We could cluster the patients, hoping the clusters will correspond

to “diseases”. We could model the distribution of symptoms using a discrete

latent variable, hoping it will represent the disease a patient has. The distribution

of symptoms will be a mixture of distributions for each disease.



K-Means Clustering

Suppose we have data x1, . . . , xn, with each xi being a vector of p variables.

We aim to divide the data into K clusters of similar items, measuring similarity by

Euclidean distance (perhaps rescaling variables to all have standard deviation one).

The K-means algorithm iteratively finds K centres for the clusters, and assigns

each item to the cluster whose centre it is nearest to:

1) Initialize µ1, . . . , µK somehow (eg, set them to randomly selected data items).

2) Repeat the following:

a) For i = 1, . . . , n, assign data item i to the cluster, k, for which ||xi − µk|| is

smallest. (Prefer the current assignment if it is tied for the best.)

b) For k = 1, . . . , K, set µk to the mean of data items assigned to cluster k.

until there is no change in the cluster assignments from the previous iteration.

It’s easy to see that this process converges, since each step reduces the value of

J =
n∑

i=1

||xi − µci ||2

where ci is the cluster assigned to data item i. The algorithm may not find the

global minimum of J , however.



From Clustering to Mixture Models

K-means clustering assigns a definite cluster to each data item. But often this is

unrealistic — eg, some patients have combinations of the symptoms we have

measured that are consistent with more than one disease.

The clusters found by the K-means algorithm are described only by the mean of

the data items in the cluster. We might like a more complete description of what

items in a cluster are like.

Both of these issues can be addressed by modeling the data as coming from a

mixture distribution, with mixture components corresponding to clusters.



Mixture Distributions

K distributions with probability/density functions P1(x), . . . , PK(x) can be mixed

in proportions π1, . . . , πK to give a mixture distribution with probability/density

function

P (x) =
K∑

k=1

πk Pk(x)

For example, when x is one dimensional, we can mix N(0, 12) and N(4, 22) with

proportions 1/4 and 3/4, giving the density function

P (x) =
1

4

1√
2π

exp(−(1/2)x2) +
3

4

1

2
√

2π
exp(−(1/2)(x−4)2/22)

as pictured below:
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Gaussian Mixture Models

When data items are real vectors, it may be reasonable to model the data as

a mixture of Gaussian distributions, using the data to estimate the mixing

proportion, the mean vector, and covariance matrix for each component.

The density function for this model, with K components, can be written as

P (x|π, µ,Σ) =

K∑

k=1

πk N(x|µk,Σk)

We might allow Σk to be any valid covariance matrix, or we might constrain Σk

to be a diagonal matrix. If the Σk are diagonal, all the dependence between the

variables in x is a consequence of the distribution being a mixture.

A natural idea is to estimate πk, µk, and Σk for k = 1, . . . , K by maximizing the

likelihood. Assuming that data items are independent, the log likelihood is

L(π, µ,Σ) =
n∑

i=1

log P (xi|π, µ,Σ)

where xi is the data vector for item i.



Issues with Maximum Likelihood for Gaussian Mixture Models

Non-identifiability: The global maximum of the likelihood for a mixture model

is not unique, since permuting the labels of the mixture components will produce

a different set of parameter values that fits the data just as well.

Other local maxima: Even aside from re-labellings, there is often more than

one local maximum of the likelihood. Finding one of the global maxima (or at

least a good local maximum) may require searching for the maximum from many

different starting points.

We don’t want the global maximum anyway: When K > 1, the actual

global maximum will be at a point with infinite likelihood, in which for some

component, k, and some data item, i, we have 0 < πk < 1, µk = xi, and Σk = 0.

This gives an infinite spike of probability density at one point, while other points

have non-zero probability density from other components.

Because of this problem, we need to try as many starting points as needed to find

a good local maximum that isn’t one where some Σk → 0.


