
STA 414/2104, Spring 2013 — Assignment #2

Due at the start of class on March 5. Please hand it in on 8 1/2 by 11 inch paper, stapled in the
upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general terms
with other students, but the work you hand in should be your own. In particular, you should not
leave any discussion with someone else with any written notes (either on paper or in electronic
form).

In this assignment, you will apply a set of R functions for fitting Gaussian process models that
I have provided to the task of modeling a time series of the number of deaths each day in
Toronto over a period of four years, along with the average temperature each day. One thing this
will illustrate is how Gaussian process models can use a variety of covariance functions, which
can be chosen to suit the characteristics of the problem being solved. To keep the effort and
computation time needed for this assignment from being too large, I have provided only one
covariate (temperature), but many other covariates (eg, humidity, levels of air pollution) could
be handled in this modeling framework.

The data file available from the course web page gives the number of deaths in Toronto for
each day from January 1, 1992 to December 31, 1995, along with the average temperature that
day (in degrees Celsius). The first line is a header with the variable names, and each later
line begins with the date as a “row name”. The data should be read with read.table using the
head=TRUE option, and then converted to a matrix with as.matrix (since this speeds up access).
You will use the first three years (that is, the first 366 + 365 + 365 days) as training data, and
predict for the last year (365 days). You should start by looking at plots of the number of deaths
and the temperature versus time, and versus each other, to see what general characteristics the
data have. (But don’t hand in these plots.)

Since most deaths occur one at a time (rather than in groups, such as from car crashes
with multiple fatalities), we might expect the number of deaths to have close to a Poisson
distribution, with a mean that depends on covariates such as temperature and time of year.
However, Gaussian processes most easily model responses that have a normal distribution given
the covariates. Fortunately, there is a trick for treating Poisson distributed data as normally
distributed — just take the square root. This works well as long as the observed numbers are
always fairly large, as is the case with this data (the minimum number of deaths in a day is 23).
We can then consider the data to be real-valued without losing much information. Seen this way,
it is easy to show that the square root of the number of deaths will have approximately a normal
distribution with a standard deviation of 1/2, regardless of what the mean given the covariates
is. You should therefore transform the number of deaths by taking the square root, and treat
this as the response variable to be modeled.

Both the data and common sense tell us that the number of deaths might depend on both
the time of year and the temperature, and that the average number of deaths in a day might
temporarily go up or down for a few days or weeks (for instance, if there is a major week-long
sporting event, or an epidemic of flu, or a strike by garbage collectors). We will try to account for
these possible effects using an additive model, expressed using a covariance function that is the
sum of several terms. Each of these terms (except the constant term) will have a hyperparameter
controlling its magnitude, since it is unclear a priori how important each will be.



The first term is a constant, which you should set to 102. This models the fact that we
don’t know the exact overall mean of the response variable (though from the data it is clearly
somewhere around 7). Since we know that the response variable is never negative, we could do
better than model its overall average level as having a prior mean of zero and standard deviation
10, but since we are fitting to 1096 data points, this would make very little difference in practice,
so we won’t bother.

The second term will model the effect of the season. You can create a variable with values
1, 2, 3, . . . for successive observations, and then divide by 365.25 to get a variable that is the
number of years from the start of the series. From this, you can compute two variables by taking
the sine and cosine of this “year” variable times 2π. Call these variables s and c. The following
term in the covariance function will be large for observations, i and j, that are at nearly the
same time of year (but possibly in different years), and small for observations that are at very
different times of year:
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The division by 22 above is based on my common-sense judgement of how smooth seasonal effects
are likely to be. The hyperparameter η2 controls the magnitude of this seasonal effect.

The third and fourth terms will model temporary changes in the mean of the response variable.
Since these might occur on time scales of around a week, or on somewhat longer time scales of
a month or so, two terms are used, differing only in their length scales, both depending on the
“year” covariate, r:
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The hyperparameters η3 and η4 control the magnitudes of these temporary variations. The use
of absolute differences rather than squared differences above produces functions that are not
differentiable, which seems appropriate since such temporary influences may be due to erratic
factors.

The fifth term in the covariance function should model the effect of temperature on the square
root of the number of deaths. You should try two forms for this term. The first form is as follows:
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where ti and tj are the temperatures for two observations. The scale factor of 20 reflects my
common-sense judgement that a difference in temperature of 20 degrees Celsius could be large
enough to have a significant effect. Alternatively, we might use a second form, that reflects the
possibility that only extremes of temperature matter. This idea can be captured by looking at
the cube of temperature, which compresses values near zero Celsius (a reasonable centre point)
while magnifying extreme temperatures. This form is therefore as follows:
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The scale factor of 20000 is again chosen on the basis of common sense knowledge of how big a
temperature change might be needed to have a noticeable effect on death.

A noise variance term is also needed. In view of the argument above regarding the square
roots of Poisson variables, we might fix the noise variance to 0.52, but for this assignment you
should let it be a hyperparameter, η2

1
. You can then see whether η1 is indeed estimated to be

close to 0.5.



In a fully Bayesian approach, the hyperparameters η1, . . . , η5 would be given prior distribu-
tions, and predictions would be based on the average over their posterior distributions. In this
assignment, however, you will find the maximum marginal likelihood estimates for these hyper-
parameters. In a real application, some or all of the scale factors fixed above using “common
sense” would also be estimated, since it’s hard to choose the best values just from prior knowl-
edge, but that would have increased the computation time required for the assignment. (In a
real application, one would probably not optimize using the “nlm” function without provided it
with gradient information, but I haven’t covered such better optimization methods in class.)

You should find estimates for the hyperparameters using the R functions that I provide for
this assignment on the course web page. Note that these are slightly different from the functions
demonstrated in class. In particular, since all the hyperparameters are squared before use, I
have eliminated the provision designed to stop them from becoming negative. Instead, the
gp find hypers function just returns the absolute value of the estimates found.

You should find values for the hyperparameters using gp find hypers based on the first three
years of data. You should then predict values for all four years of data. Only for the last year
will these be real predictions (based however on knowing the actual temperatures during that
year). For the first three years, these “predictions” will be for hypothetical different years that
happen to have the same temperatures; this is still of interest in showing what the model thinks
is the systematic part of the variation in the number of deaths.

Since there are two forms for the fifth term in the covariance function, you will actually
estimate hyperparameters and make predictions twice, once for each form. The gp find hypers
function provided prints the log marginal likelihood at the optimum found, which you can use
to assess which of these two forms of the fifth term in the covariance function is more probable
given the data.

You will need to choose suitable initial estimates for the hyperparameters, for gp find hypers
to start with. You may need to try several values, until you get reasonable results. Passing an
argument of print.level=2 to gp find hypers (which it passes on to nlm) will cause nlm to print
what it is doing, which might help when choosing starting values.

You should hand in the R script you used to do all this, the estimates and marginal likelihoods
you found, and a discussion of the results. For your discussion, you may want to output more
information, or produce various plots, in order to gain as much insight as you can into what is
going on with these models and with this data.


