STA 414/2104, Spring 2013 — Assignment #1

Due at the start of class on February 14. Please hand it in on 8 1/2 by 11 inch paper, stapled in
the upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general terms
with other students, but the work you hand in should be your own. In particular, you should not
leave any discussion with someone else with any written notes (either on paper or in electronic

form).

In some supervised learning situations, the input variables available for predicting the response
variable come in two (or more) groups. For example, if we are trying to predicting the topic of a
web document, we might look both at the number of times various words occur in the document,
and at whether the document is linked to from certain popular websites. Sometimes both groups
of inputs may be highly relevant, but other times, one or the other (or both) might not be of
much use in predicting the response (at least if we already have the inputs in the other group).

If we have a huge amount of training data, perhaps we can get good results by just fitting
a model that uses all the inputs, without any regularization. But with a limited amount of
data, getting good results may require estimating parameters with a penalty added to the log
likelihood, or using a Bayesian method with a prior distribution. When the inputs come in two
groups, using separate penalties or prior distributions for regression coefficients in the two groups
may be desirable — otherwise, we might “over regularize” inputs in one group, while “under
regularizing” inputs in the other. If we can somehow automatically choose the appropriate
penalty or prior for each group, we will have effectively learned the degree to which each group
of inputs is relevant to the prediction problem.

In the lectures, we have seen how the magnitude of a penalty can be set by minimizing
loss in a cross-validation assessment, and how the variance for a prior distribution can be set
by maximizing marginal likelihood. In this assignment, you will apply these methods to the
situation where there are two groups of inputs, and hence two penalty magnitudes, or two prior
variances, which can jointly be set based on cross-validation loss or marginal likelihood.

For this assignment, you will use two regression datasets (with real-valued responses) that
I generated synthetically. The first data set has 15 inputs in the first group, and 20 inputs in
the second group (total 35 inputs). The second dataset has 20 inputs in both groups (total 40
inputs). For both datasets, I generated 50 training cases, and 1000 test cases. The test cases are
supplied to allow you to see how well the methods performed. You should look at the responses
in the test cases only at the very end, when computing the test errors. In a real application, you
would of course not know the values of the responses in the test cases at the time when you were
making predictions for them.

The datasets are available from the course webpage, at
http://www.utstat.utoronto.ca/ radford/stad14/

There are four text files for each dataset, containing inputs and responses for the training and
test sets. The files of response values can be read with the R ‘scan’ function, which returns a
vector. The files of inputs should be read with ‘read.table’; using the ‘head=TRUE’ option, since
the first line of each file contains names for the inputs. The result of ‘read.table’ is a data frame,



which you should convert to a matrix with ‘as.matrix’ (this is likely to make your program run
faster). Inputs in the first group will be the first so-many columns of this matrix, with the second
group consisting of the remaining columns. You may consider the rows (that is, the cases) to be
in random order (so you won’t have to randomize when selecting validation sets).

The course webpage also has examples of R programs for doing penalized least squares with
cross-validation and for fitting a Bayesian linear model with priors selected by marginal likelihood.
You may use these as a starting point for your programs if you wish. Note that in this assignment,
we will use only the original input values, not various functions of these inputs.

For the method of penalized least squares with cross-validation, you should write a function
that takes as arguments the matrix of training inputs, the vector of training responses, the number
of inputs in the first group, and a set of values to consider for the penalty magnitudes (\; and
A2), and returns a matrix of average squared errors from a 10-fold cross-validation assessment
of how well each combination of lambda values for the two groups of inputs does. The penalty

used should be of the form ) )
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where p is the total number of inputs, of which p; are in the first group. Notice that the intercept,
(o, is not penalized.

You should also write a function that returns a matrix of average squared errors on test cases
when using each combination of values for A\; and Ay. It will take the same arguments as the
cross-validation function, plus the matrix of inputs for test cases, and the vector of responses for
test cases.

When trying out this method on the two datasets provided, you should consider values of 0,
0.25, 0.5, 1, 2, 4, 8, 16, and 32 for \; and \s.

For the Bayesian method with prior variances selected using marginal likelihood, you should
write a function that takes as arguments the matrix of training inputs, the vector of training
responses, the number of inputs in the first group, a prior standard deviation for 3y, a set of
values to consider for the prior standard deviations of 3; in each of the two groups (w; and ws),
and a set of values to consider for the residual standard deviation (¢), and returns an array of
log marginal likelihoods for each combination of wy, ws, and o. (Note that arrays with three
dimensions can be created with the ‘array’ function in R).

You should also write a function that returns an array of average squared errors on test cases
when using each combination of wy, wy, and ¢, which takes the same arguments plus the matrix
of inputs for test cases, and the vector of responses for test cases.

When trying out this method on the two datasets provided, you should consider values of
0.05, 0.1, 0.2, 0.4, 0.8, and 1.6 for w; and w9, and values of 0.35, 0.5, 0.7, 1.0, 1.4, and 2.0 for o.

You should hand in a listing of your functions and the R scripts used to apply them to the
datasets, the output you obtained (cross-validation errors, marginal likelihoods, and test errors),
and a discussion of what it means. Your discussion should address issues such as whether the two
methods produced similar results, whether these results were better than when no regularization
is used (ie, when A\; = Ay = 0), whether the results were better than when the inputs where not
divided into two groups (ie, when A\ = Ay or w; = ws), whether the two datasets differed, and
whatever else you see that is interesting about the results.



