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Kernel PCA



PCA on Basis Function Values

Rather than do PCA on the original vector of p values, x, we can do it on the

values of m basis functions, ¢(x) = [p1(x),..., dm ()]

If m > p, the basis function values will lie in a p-dimensional space embedded in
an m-dimensional space. This would make modeling the data as a multivariate
Gaussian be drastically incorrect, but PCA makes no distributional assumptions

— it just finds the directions of maximum sample variance.

If m is big, we should of course use the trick that was presented earlier for when
p is big — find the eigenvectors of the n x n matrix X X* rather than the

eigenvectors of the p x p matrix X' X.

Note that even if the x values have been centred to have sample mean of zero,
the ¢(x) values will probably not be centred. So we’ll have to subtract the sample

mean for each basis function before finding eigenvectors.



Details of PCA on Basis Function Values
Let ® be the n x m matrix of basis function values for the n observed items, so
Dir = dr(xi).
If we let 1,, be a vector of n ones, we can get a row vector of sample means of the

basis functions as (1/n)11®. The matrix of centred basis function values can then

be written as

~

b = & — 1,[(1/n)1I8] = [Luxn — Luxn/n]®

where I« is the n X n identity matrix and 1,,«, is the n X n matrix of all ones.

We now find the eigenvectors of
&)EIV)T — [Ian — lan/n] (I)(I)T [Ian — 1n><n/n]

If v is such an eigenvector, of length one, with eigenvalue A, then Ty / V' is an

eigenvector of CTDTCE, also of length one, and with eigenvalue .



Projections of Basis Function Vectors for Test Points

What we’re usually interested in are the projections of the basis function vectors

for test points on the principal components.

Let ®Tv / VA be a principal component direction, where v is an eigenvalue of OPT
with eigenvalue A\. The projection in this direction of the centred basis function

values for a point x, is
[B(z.)" = (1/m)15@] 270 /VA = [p(z.)" = (1/n)15 @] @7 [Tnxn — Lnsn/n]v/VA
= [p(x)T DT — 120DT /1) [Inxn — Loxn/n]v/VA



Applying the Kernel Trick

All these operations involve ¢(x) only via inner products. We can define

K(z,3") = ¢(x)"¢(2)

and then define the n x n matrix K by K;; = K(x;,x;). We then can compute

~

K = ZI/)&)T — [Inxn — ]-nxn/n]K[Inxn — ]-nxn/n]

If the n x n matrix K has unit length eigenvectors vy, vs, ..., v, with eigenvalues
Al > Ay > -+ > \,, then the projection of a data point z, on the m’th principal

component is
k — 1 K/n] [Inxn — Loxn/n]vm/V Am
where k is the vector of dimension n with k; = K (x,, z;).

Since ¢ no longer appears explicitly in these formulas, we can let the number of

basis functions go to infinity, as long as we know how to compute K (x,z’).



Example of Kernel PCA

Kernel PCA for 2D data from two classes, using K (z,z') = exp(—||z — 2/||?).
Original data and pairs of projections on PC1, PC2, and PC3:
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