STA 414/2104, Spring 2012, Practice Problem Set #2

Note: these problems are not for credit, and not to be handed in

Question 1: Recall that a multilayer perceptron network with m hidden units using the tanh
activation function computes a function defined as follows:

m P
flz,w) = w(()Q) + Zw]@)éf)j(%w), ¢j(x,w) = tanh (w(()? + ng)ﬂﬂk)
= k=1

where w is the set of parameters (weights) for the network, and x is the vector of p inputs to the
network.

Suppose we train such a network with m = 1 hidden units on the following set of n = 4 training
cases, with p = 1 input, x1, and one real-valued response, y:

rr y
-1 1
0 1
1 5
2 5

We use a Gaussian model for the response, in which y given x has a Gaussian distribution with
mean y(x,w) and variance one.

a) Suppose that we initialize the weights to w[()ll) =0, wgll) =0, w(()2) = 0, and w§2) = 0.1.

Define E(w) to be the minus the log likelihood, dropping terms that don’t depend on w,
so that E(w) is 1/2 times the sum of the squares of the residuals in the four training cases.

Find the gradient of E(w), as would be needed to do gradient descent learning, evaluated
at the initial value of w specified above. In other words, find the partial derivatives of E
with respect to all the components of w, at the initial value of w.

b) If gradient descent learning to minimize minus the log likelihood is done from the initial
weights specified in part (a) above, what weights will the learning converge to (assuming
that the learning rate used is small enough to ensure stability)? You may not be able to
say exactly what the values of all the weights will be, but say as much as you can.

¢) Suppose that gradient descent learning is done from the initial weights in part (a), but with

(1)

a penalty of )\[wlll ]? added to minus the log likelihood. If A is a small positive number,
what will the learning converge to (assuming that the learning rate used is small enough
to ensure stability)? You may not be able to say exactly what the values of all the weights
will be, but say as much as you can.



Question 2: Below are five functions randomly drawn from five different Gaussian processes.
For all five Gaussian processes, the mean function is zero. The covariance functions are one of
those listed below.
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For each of the five covariance functions below, indicate which of the five functions above is most
likely to have been drawn from the Gaussian process with that covariance function.

1) Cov(yiy,yi,) = 0.5% exp(— ((xi, — xi,) /0.5)?)

2) Cov(Yiy, Yi) = Tiy iy

3) Cov(yiy, ¥i,) = 5% + 52wy x, + 0.52 exp(— ((zi, — xi,) /0.1)?)

4) Cov(yi,, yi,) = 0.7% exp(— ((zs; — x3,) /0.1)%) + 8% exp( — ((wi, — z4,) / 2)?)

5) Cov(yir,yi,) = 8% exp(—((zi; — x3,) /5)%)



Question 3: Suppose we model the relationship of a real-valued response variable, y, to a single
real input, x, using a Gaussian process model in which the mean is zero and the covariances of
the observed responses are given by

Cov(yi, yi/) = 0.52(51,2‘/ + K(.%'i, xi/)
with the noise-free covariance function, K, defined by

, l—lz—2| iflz—2| <1
K(z,2'") =

0 otherwise

Suppose we have four training cases, as follows:

z Yy
0.5 2.0
2.8 3.3
1.6 3.0
3.9 2.7

Recall that the conditional mean of the response in a test case with input x,, given the responses
in the training cases, is k”C 1y, where y is the vector of training responses, C' is the covariance
matrix of training responses, and k is the vector of convariances of training responses with the
response in the test case.

Find the predictive mean for the response in a test case in which the input is z, = 1.2.

Question 4: Recall that for a Gaussian process model the predictive distribution for the response
y* in a test case with inputs z* has mean and variance given by

Ely*|2*, training data] = kTC™ly
Var[y* | z*, training data] = v — kTC 'k

where y is the vector of observed responses in training cases, C' is the matrix of covariances for
the responses in training cases, k is the vector of covariances of the response in the test case with
the responses in training cases, and v is the prior variance of the response in the test case.

a) Suppose we have just one training case, with ; = 3 and y; = 4. Suppose also that the
noise-free covariance function is K(z,z') = 2~ 1#=2'l "and the variance of the noise is 1 /2.
Find the mean and variance of the predictive distribution for the response in a test case
for which the value of the input is 5.

b) Repeat the calculations for (a), but using K (z, z') = 2*/*=%'|, What can you conclude from
the result of this calculation?



Question 5: Consider a binary classification problem in which two inputs are available for
predicting the class — input z1, which is binary, and input x3, which is real-valued. Suppose we
use a naive Bayes model in which x; and x5 are assumed to be independent within each class.
Let P(x; = 1|Cy) = 6y and P(x; = 1|C;) = 61, and assume that x3|Co ~ N(po,0?) and
x2|C1 ~ N(p1,0?), where g, 01, po, i1, and o are parameters to be estimated from the training
data.

Supposing that these parameters have been estimated, as éo, 0, o, fi1, and &, and that some
estimate for the “prior” probability of class 1, P(C1) is available, work out an expression for the
probability of class 1 for a test case with inputs (z7, z3).

Question 6: Recall that the maximum margin separating hyperplane, defined by w”x + b = 0,
can be found by solving the following optimiziation problem:

minimize ||w||?, subject to y;(wTx; +b) > 1fori=1,...,n

Use this to find the maximum margin hyperplane for the following n = 3 data points, (z,y), in
which z is one-dimensional:

(—1,-1), (2,+1), (3,+1)

(Note that a separating “hyperplane” when x is one-dimensional is a single point.)

You should produce a two-dimensional plot of the linear inequality constraints on w and b, and
from this find the minimum of ||w||?. You should then plot the function wz + b, verify that the
point where wx + b = 0 separates the classes, and find its margin.



