
STA 414/2104, Spring 2012 — Assignment #3

Due at the start of class on March 22. Please hand it in on 8 1/2 by 11 inch paper, stapled
in the upper left, with no other packaging.

This assignment is to be done by each student individually. You may discuss it in general
terms with other students, but the work you hand in should be your own. In particular, you
should not leave any discussion with someone else with any written notes (either on paper or
in electronic form).

In this assignment, you will use a Gaussian process regression model with a form of covariance
function that allows for both additive models and models with interactions between variables,
and implement it using the eigendecomposition of the covariance matrix. You will try out
your implementation on two artificial data sets I haved provided and on the same ozone data
set as you used in Assignment 1.

Recall that in a Gaussian process regression model, the covariance function for observed
training responses, y(1), . . . , y(n), associated with vectors of p covariates, x(1), . . . , x(n), can be
written as the sum of a noise free covariance function, K(x, x′), and a noise term that is
non-zero only for the covariance of a response with itself. That is,

Cov(y(i), y(i′)) = K(x(i), x(i′)) + σ2δi,i′

where δi,i′ is zero if i 6= i′ and 1 if i = i′. In this assignment, you will use the following form
for K(x, x′):

K(x, x′) = η2
[

102 + α exp
(

−ρ2
p

∑

j=1

(xj − x′

j)
2
)

+ (1−α)
p

∑

j=1

exp(−ρ2(xj − x′

j)
2)

]

where ρ, α, and η are parameters that will need to be found from the data.

The first exponential term in K(x, x′) gives higher covariance when x and x′ are close in
Euclidean distance, which is invariant with respect to rotation of the coordinate system. In
contrast, the later sum of exponential terms gives higher covariance when individual coordi-
nates xj and x′

j are close, so the coordinate system used matters. Also, the first exponential
term goes to zero if x and x′ differ greatly in any coordinate, which is not the case for the
later sum of exponential terms.

Another way of looking at this covariance function is that it describes the prior covariance
for a function that can be written as f(x) = f0(x) +

∑

j fj(xj), with f0, f1, . . . , fp being
independent in the prior. This covariance function is the sum of covariance functions for
each component function. The first exponential term corresponds to the function f0, which
allows interactions between the covariates, while the other terms correspond to the functions
f1, . . . , fp, which each look at only one covariate. The parameter α controls the relative
importance of these terms. If α = 1, the model is purely interactive. If α = 0, the model
is purely additive. Intermediate values for α would be appropriate when f has an additive
component, but also has some interactions.

Gaussian process models are usually implemented using the Cholesky decomposition of
the covariance matrix for the training responses. In this assignment, however, you will use the

1



eigendecomposition, since, although findig it is about 15 times slower, it allows for a trick in
which the log likelihood can be quickly evaluated for many combinations of values for η and σ
(with ρ and α fixed), which will be especially helpful for the unsophisticated search strategy
that will be used in this assignment.

Let C be the covariance matrix for the training responses, so that

Ci,i′ = Cov(y(i), y(i′)) = K(x(i), x(i′)) + σ2δi,i′ = η2B(x(i), x(i′)) + σ2δi,i′

where B(x, x′) is the sum of terms in square brackets in the expression for K(x, x′) above. We
can write this as C = η2B + σ2I.

The eigendecomposition of C, which can be found with R’s eigen function (use the
symmetric=TRUE option for best performance), is

C = EΛET

where E is an n × n matrix whose columns are the eigenvectors of C, and Λ is a diagonal
matrix whose diagonal elements, λ1, . . . , λn, are the corresponding eigenvalues. Note that the
inverse of C has the same eigenvectors as C, but the eigenvalues are 1/λ1, . . . , 1/λn.

The eigendecomposition can be used to compute the log likelihood, which is

L(ρ, α, η, σ) = −(1/2) log(|C|) − (1/2)yTC−1y

where y is the vector of observed training responses. The log of the determinant of C is
∑

i log λi. The second term can be written as

(1/2)yTC−1y = (1/2)yT (EΛET )−1y = (1/2)yTEΛ−1ETy = (1/2)uT Λ−1u

where u = ETy. Note that Λ−1 is diagonal with elements 1/λ1, . . . , 1/λn on the diagonal.
In R, the product of a diagonal matrix with diagonal elements given by the vector d times a
vector u can be computed as d*u, which is much faster than the matrix product, diag(d)%*%u.

The eigendecomposition can also be used to find the predictive mean for the response in
a test case, which is

kTC−1y = kTEΛ−1ETy = kTEΛ−1u

where k is the vector of covariances of the test response with the training responses.

The advantage of using the eigendecomposition is that if the eigendecomposition of B is
EΛET , with Λ being diagonal with diagonal elements λ1, . . . , λn, then the eigendecomposition
of C = η2B + σ2I is C = EΛ′ET , with the same eigenvectors as B, and eigenvalues of
λ′

i = η2λi + σ2. So after one expensive computation of the eigendecomposition of B, for some
values of ρ and α, the eigendecomposition of C can be quickly found for any values of η and
σ, as long as the values of ρ and α are unchanged. (Note that it may be necessary to add
a slight amount (eg, 0.00012) to the diagonal of B before finding its eigendecomposition to
avoid numerical problems, which would have a negligible effect on the results.)

You should write an R function called gp that implements the Gaussian process model
described above, using the eigendecomposition method. The arguments of gp should be

2



a matrix of training inputs, X, a vector of training responses, y, a matrix of test inputs,
Xtst, and vectors rho.vals, alpha.vals, eta.vals, and sigma.vals that contain values
for the ρ, α, η, and σ parameters to consider. This function should find the combination of
parameter values (from among those to consider) that has the highest likelihood, and then use
those parameter values to predict the responses for the test cases. (You need only produce a
predictive mean, not a predictive variance.) It should return both these predictions and the
maximum likelihood values of the parameters that it found (as a list, which may contain other
information too, if you wish).

For this assignment, you should consider the following sets of values for the parameters:

ρ : 0.10, 0.14, 0.20, 0.28, 0.40, 0.56, 0.80, 1.1

α : 0, 1/3, 2/3, 1

η : 0.35, 0.50, 0.71, 1.0, 1.4, 2.0, 2.8, 4.0, 5.6, 8.0

σ : 0.20, 0.28, 0.40, 0.56, 0.80, 1.1, 1.6, 2.2, 3.2, 4.5

On the course web page, I have provided two artificial data sets to try out your program
on, along with the same ozone data set as you used for Assignment 1. They are to be read
with read.table using the head=TRUE option. You should standardize the inputs for these
data sets to have mean zero and standard deviation one on the training cases (the test cases
should of course be rescaled with the same offset and scaling factor as the training cases). Be
sure to convert the inputs to a matrix before trying to use them in matrix operations.

You should report the square root of the average squared error for the predictions on test
cases for these data sets, along with the values of ρ, α, η, and σ that are chosen by maximum
likelihood. You should hand in your gp function and the script you use to run it on these
data sets. You should also hand in a discussion of the results, for which you may wish to look
at other things, such as how well the Gaussian process model performs on these data sets if
you force the extreme values of α = 0 (purely additive) and α = 1 (purely interactive), and
how performance on the ozone data set compares to what you found with the methods in
Assignment 1.

3


