
More on Neural Networks

Read Chapter 5 in the text by Bishop, except omit

Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.6



Recall the MLP Training Example From Last Lecture
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Training for around 10000 iterations seemed to have found a local maximum, but

further training showed it hadn’t really!



Overfitting in This Example

The network found by training for 10000000 iterations has slightly higher

likelihood, but produces (slightly) overfitted results.

True regression function in black,

along with regression functions

defined by the networks after

training for 102 (violet), 103

(blue), 104 (green), 106 (orange),

and 108 (red) iterations.
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xMuch more severe overfitting can occur when there are more inputs and/or more

hidden units.



Avoiding Overfitting Using a Penalty

As for linear basis function models, we can try to avoid overfitting by maximizing

the log likelihood plus a penalty function.

For an MLP with one hidden layer, a suitable penalty to add to minus the log

likelihood might be
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We need to select two constants controlling the penalty, λ1 and λ2. Setting

λ1 = λ2 isn’t always reasonable, since a suitable value for λ1 depends on the

measurement units used for the inputs, whereas a suitable value for λ2 depends

on the measurement units for the response.

We might try S-fold cross-validation, but it may not work well, if each training

run goes to a different local maximum. So we might use a single split into

estimation and validation sets, with no re-training on the whole training set.



Avoiding Overfitting Using “Early Stopping”

We saw in the example that gradient descent spent a long time in a reasonable

solution (not overfitted) before things went a bit crazy. Maybe we can somehow

stop at this good point.

Some impressive results of MLP training that have been reported actually

depended on having done this without meaning to — they just stopped when they

lost patience with gradient descent, and that happened to be at a good point.

We’d like an “early stopping” method that doesn’t rely on being lucky.



Early Stopping Using a Validation Set

We can tell when to stop gradient descent optimization using a set of validation

cases that’s separate from the cases used to compute the gradient.

Here’s the procedure:

1. Randomly divide the training set into an estimation set and a validation set

— eg, 80% of cases in the estimation set and 20% n the validation set.

2. Randomly initialize the parameters to values near zero.

3. Repeatedly do the following:

– Compute the gradient of the log likelihood using the estimation set.

– Update the parameters by adding η times the gradient.

– Compute the log probability of y given x for the validation cases.

Stop when the average log probability for validation cases is substantially less

than the maximum of the values found previously (definitely getting worse).

4. Make predictions for test cases using the parameter values from the loop

above that gave the highest average log probability to the validation cases.



An Example of Early Stopping Using Cross Validation

I tried same example as before, but with 75 of the 100 training cases used for

estimation (computing the gradient) and 25 used for validation (deciding when to

stop / which parameters to use). I used 20 hidden units this time, and set η = 0.2.
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I divide total log probability by the number of cases in these plots, so that 75 vs.

25 won’t matter. The average for estimation cases is shown in black, for validation

cases in grey. The highest log probability for validation cases is at iteration 94000.



The Function Computed by the Network Selected

Here is the true regression

function (black), the re-

gression function defined

by the network at itera-

tion 94000 that was se-

lected by cross validation

(blue) ,and the last net-

work at iteration 1000000

(red).

Cross validation worked

this time, but 25 valida-

tion cases is really too few

for reliable results.
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Advantages of Early Stopping

Early stopping using a validation set has some advantages over a penalty method,

in which you set λ1 and λ2 using S-fold cross validation, then train again on all

the data with the λ1 and λ2 you choose.

With early stopping:

• You only have to train the network once — not once for each setting of λ1

and λ2 you consider, and then again on all the training data to get the final

parameters. Important if training takes a week!

• The performance measure from cross-validation applies directly to the actual

set of network parameters you will use, not to values of λ1 and λ2 that may

not do the same thing for a different local maximum.



Disadvantages of Early Stopping

Early stopping also has some problems:

• It’s very ad hoc — what’s the justification for this procedure?

• It depends on details of the optimization method — eg, results could be

different with a different η.

• In particular, we might want to use a different η for w(1)s than for w(2) —

sort of like using different λs for a penalty method.

• Some of the training data is used only to decide when to stop — this seems

wasteful.

We could try to solve the third problem by doing training runs using different

values of η for w(1) and for w(2), and then pick the best parameters (using the

validation set) from all these runs.

The fourth problem can also be solved, by doing more training runs. . .



Using an Ensemble of Early-Stopped Networks

Rather than train just once, with a single split into estimation and validation sets,

we can train several times, with several splits, to create an ensemble of networks.

It seems best to split the training set into S equal portions, and then train S

times. Each training run uses S−1 portions of the training set for estimation, and

one portion for validation (to choose which parameters from the run to use).

We get S sets of parameters this way. To make predictions for test cases, we

average the predictions from all S networks.

This way we use the whole training set for estimation. Averaging several network

outputs also reduces the effect of any single peculiar training run.



Modeling Non-Gaussian Response Variables

So far, we’ve used the function computed by the network to define a Gaussian

distribution for the response variable, t, given the input variables, x:

t |x, w ∼ N(y(x, w), σ2)

More generally, we can use the network to define any sort of conditional

distribution for t given x. Some useful examples:

• Binary classification models, where t is 0 or 1.

• Multi-class classification, where t is a value from some finite set.

• Regression with non-Gaussian residuals, where t is real, but t|x is not

Gaussian. Eg, we might use a heavier-tailed t-distribution if some cases have

residuals that are larger than is typical of other cases.



The Logistic Model for Binary Responses

Logistic models are very common way of handling binary responses, such as when

learning to classify items into two groups.

If y(x, w) is the function computed by the network, we define the probability for a

response of t = 1 to be

P (t = 1 |x, w) =
[

1 + exp(−y(x, w))
]

−1
= σ(y(x, w))

where σ(a) = 1/(1 + e−a).

In Bishop’s book, he considers the σ function to be part of the network, and

hence already part of y(x, w), but I think it’s clearer to see it as part of a model

for t|w that uses the network output.

One can easily show that the derivative of σ is σ′(a) = σ(a) (1−σ(a)). This is

used when computing derivatives by backpropagation.


