
Analytically-Tractable Bayesian Models



Conjugate Prior Distributions

For most Bayesian inference problems, the integrals needed to do inference and

prediction are not analytically tractable — hence the need for numerical

quadrature, Monte Carlo methods, or various approximations.

Most of the exceptions involve conjugate priors, which combine nicely with the

likelihood to give a posterior distribution of the same form. Examples:

1) Independent observations from a finite set, with Beta / Dirichlet priors.

2) Independent observations of Gaussian variables with Gaussian prior for the

mean, and either known variance or inverse-Gamma prior for the variance.

3) Linear regression with Gaussian prior for the regression coefficients, and

Gaussian noise, with known variance or inverse-Gamma prior for the variance.

It’s nice when a tractable model and prior are appropriate for the problem.

Unfortunatley, people are tempted to use such models and priors even when they

aren’t appropriate.



Independent Binary Observations with Beta Prior

We observe binary (0/1) variables Y1, Y2, . . . , Yn.

We model these as being independent, and identically distributed, with

P (Yi = y |µ) =







µ if y = 1

1 − µ if y = 0







= µy (1−µ)1−y

Let’s suppose that our prior distribution for µ is Beta(a,b), with a and b being

known postive reals. With this prior, the probability density over (0, 1) of µ is:

P (µ) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1−µ)b−1

Here, the Gamma function, Γ(c), is defined to be
∫

∞

0
xc−1 exp(−x) dx.

For integer c, Γ(c) = (c − 1)!.

Note that when a = b = 1 the prior is uniform over (0, 1).

The prior mean of µ is a/(a + b). Big a and b give smaller prior variance.



Posterior Distribution with Beta Prior

With this Beta prior, the posterior distribution is also Beta:

P (µ |Y1 = y1, Y2 = y2, . . . , Yn = yn)

∝ P (µ)
n

∏

i=1

P (Yi = yi |µ)

∝ µa−1 (1−µ)b−1

n
∏

i=1

µyi (1−µ)1−yi

∝ µΣyi+a−1 (1−µ)n−Σyi+b−1

So the posterior distribution is Beta (
∑

yi + a, n −
∑

yi + b).

One way this is sometimes visualized is as the prior being equivalent to

a fictitious observations with Y = 1 and b fictitious observations with Y = 0.

Note that all that is used from the data is
∑

yi, which is a minimal sufficient

statistic, whose values are in one-to-one correspondence with possible likelihood

functions (ignoring constant factors).



Examples of Beta Priors and Posteriors
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Predictive Distribution from Beta Posterior

From the Beta (
∑

yi + a, n −
∑

yi + b) posterior distribution, we can make a

probabilitistic prediction for the next observation:

P (Yn+1 = 1 |Y1 = y1, Y2 = y2, . . . , Yn = yn)

=

∫

1

0

P (Yn+1 = 1 |µ) P (µ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dµ

=

∫

1

0

µ P (µ |Y1 = y1, Y2 = y2, . . . , Yn = yn) dµ

=

∫

1

0

µ
Γ(n + a + b)

Γ(Σyi + a)Γ(n − Σyi + b)
µΣyi+a−1 (1−µ)n−Σyi+b−1 dµ

=
Γ(n + a + b)

Γ(Σyi + a)Γ(n − Σyi + b)

Γ(1 + Σyi + a)Γ(n − Σyi + b)

Γ(1 + n + a + b)

=

∑

yi + a

n + a + b

This uses the fact that cΓ(c) = Γ(1 + c).



Generalizing to More Than Two Values

For i.i.d. observations with a finite number, K, of possible values, with K > 2, the

conjugate prior for the probabilities µ1, . . . , µK is the Dirichlet distribution, with

the following density on the simplex where all µk > 0 and
∑

µk = 1:

P (µ1, . . . , µK) =
Γ(Σkαk)

Πk Γ(αk)

K
∏

k=1

µαk−1

k

The parameters α1, . . . , αK can be any positive reals.

The posterior distribution after observing n items, with m1 having value 1, m2

having value 2, etc. is Dirichlet with parameters α1 + m1, . . . , αK + mK .

The predictive distribution for item n + 1 is

P (Yn+1 = k |Y1 = y1, . . . , YK = yk) =
mk + αk

n + Σαk



Independent Observations from a Gaussian Distribution

We observe real variables Y1, Y2, . . . , Yn.

We model these as being independent, all from some Gaussian distribution with

unknown mean, µ, and known variance, σ2.

The conjugate prior for µ is Gaussian with some mean µ0 and variance σ2
0.

Rather than talk about the variance, it is more convenient to talk about the

precision, equal to the reciprocal of the variance. A data point has precision

τ = 1/σ2 and the prior has precision τ0 = 1/σ2
0.

The posterior distribution for µ is also Gaussian, with precision τn = τ0 + nτ ,

and with mean

µn =
τ0µ0 + nτy

τ0 + nτ

where y is the sample mean of the observatons y1, . . . , yn.

The predictive distribution for Yn+1 is Gaussian with mean µn and variance

(1/τn) + σ2.



Gaussian with Unknown Variance

What if both the mean and the variance (precision) of the Gaussian distribution

for Y1, . . . , Yn are unknown?

There is still a conjugate prior, but in it, µ and τ are dependent:

τ ∼ Gamma(a, b)

µ | τ ∼ N(µ0, c/τ)

for some constants a, b, and c.

It’s hard to imagine circumstances where our prior information about µ and τ

would have a dependence of this sort. But unfortunately, people use this

conjugate prior anyway, because it’s convenient.


