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Recall that linear and quadratic discriminants can be derived from Gaussian models for the distri-
bution of the inputs within each class. Using such models, we can find the probability of class k
given values for the inputs, x, in a case by Bayes’ Rule:
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Linear discriminants, in which a case is classified according to the value of w”z +wy, for some vector
w and scalar wy, arise when we assume that P(z|C}) is Gaussian, with the same covariance matrix
for all classes, k. Quadratic discriminants arise when we allowed different covariance matrices for
different classes. In both cases, we find the means and covariance matrices by maximum likelihood.

Question 1: [ 36 marks | Each of the two scatterplots below shows training cases for a classification
problem with two inputs and two classes, with the class of the case indicated by the colour of dot
(black is class 1). Three test cases with inputs x4, xp, and z¢, are also indicated, by the letters
A, B, and C. For each scatterplot, write down the approximate probability of class 1 for each of
the three test cases, if the probabilities are found assuming that the covariance matrix is the same
for both classes (as with linear discriminants) and if the probabilities are found assuming that the
covariance matrices for the two classes may be different (as with quadratic discriminants). You
should give rough approximations for these probabilities  either “near 07, “near 1”7, or “near 1/2”.
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Recall that a multilayer perceptron network with one layer of M hidden units computes an output,
y, from the input vector, x, for a case, with the function computed depending on the settings of the
network parameters, w, as follows:

y = [f(s)
5w
s = w(())+2w,(€)zk
k=1
zr = hlag), fork=1,....M

D
ap = w,%)—l—Zw,%)mj, fork=1,...,M
j=1

Question 2: [ 30 marks ]

For this question, suppose that f(s) = s and that h(a) = tanh(a), where tanh is the hyperbolic

tangent function, tanh(a) = (e —e™?)/(e® +e~*). Here is a plot of the tanh function:
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Suppose that we use such a multilayer perceptron network with M = 2 hidden units to fit the 30
training cases plotted below:
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The plot shows the one-dimensional input, z, on the horizontal axis and the target value, ¢, on the
vertical axis. Suppose we set the network parameters, w, to minimize E(w) = (1/2) 2N, (t®) —y())2,
where ) and y(9 are the values of the target variable and the network output in training case 1.
List on the next page the approximate values that will be found for the network parameters. Rough
approximations found by eye are OK. There is more than one correct solution.



One possible solution (numbers are approximate). Other solutions can be obtained by permuting the
hidden units or negating all weights involving a hidden unit.

w(()g) =6  Adjusted for right value at x = —10, given other weights

@ —1 First bump up is of height 2, same as tanh

First bump down is of height 4, twice that of tanh

wg(l)) = 2.5 This and next adjusted so first bump is centred at x = —5
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Wy This and next adjusted so second bump is centred at v = 2.5
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Question 3: [ 34 marks | For this question, suppose that there are D = 2 inputs, that there is
M = 1 hidden unit, that f(s) = s, and that h(a) = a'/3. Suppose also that we have two training
cases, for which the values of the input and target variables are as follows:
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Consider a value for w in which the parameters are as follows:
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w(()2 =-1, w s Wi = =1 i

wip = 1, Wiy =2

Compute the gradient of E(w) = (1/2) N, (t®) — y()2 at this value of w — ie, find the partial
derivatives of F(w) with respect to each component of w. Actual numerical values are required.



Here is what we get for each training case by forward propagation to find the values of hidden units
and outputs:
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Here is what we get by backpropagation to find the derivatives of E;(w) = (1/2)(t® — y)2, for
i=1,2:

-2 -4 —4/3
1 2 1/6

From these forward and backward values, we can get the derivaties of F(w) with respect to each
weight by summing the contributions from the two training cases, with the following results:

OE/ow? = (-2) + (1) = -1
oB/ow? = (-2)(1) + (@) = 0
OE/ouws) = (—4/3) + (1/6) = -T/6
OB/ouf) = (=4/3)(1) + (1/6)(2) = -1
OB/owly = (=4/3)(0) + (1/6)(3) = 1/2



