Notes for STA 250, Radford M. Neal, 2000

The Mean and Variance of the
Sample Mean

Suppose we have n random variables,
X1,...,Xn, all independent, and all with the

identical distribution (sometimes called “i.i.d.").

Suppose they have mean p and variance o2,

The average of the X; is also a random
variable, defined by

X =

S|+

n
> X
=1

What are the mean and variance of X?

The mean is (1/n) fj n=p.
i=1

. . n
The variance is (1/n2) Y. o2 =o2/n.
i=1

The standard deviation is a/y/n.

What does this say about how good the
sample mean, X, is as an estimator of u?

Sampling Distribution for Proportions

If X is the number of successes in n trials, the
proportion of successes is X/n. We'll call this

proportion p, and will regard it as an estimator
for w, the actual probability of success.

The distribution for p is just a relabelling of
that for X:
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binomial(10,0.8) distribution of proportion

This distribution lets us answer questions such

as:
If we ask a sample of 10 people whether they
like cornflakes, what is the probability that the
proportion who say they do will be less than
2/3 if the proportion in the population is 0.87

The Mean and Variance of the
Sample Proportion

Since p = X/n, the mean of p is

px/n = (nm)/n =«
So p is an unbiased estimator for .
The variance of p is

o%(/n2 = mr(l—ﬂ')/n2 = n(1-—m)/n

The standard deviation of p is therefore

/(1 —m)

Vn

This is all a special case of the mean and
variance of a sample mean, since

1 n
p = Elglsz

where S; is O or 1, indicating failure or success
in the ith trial.

The Central Limit Theorem

The sample mean, z, from n independent
observations has close to a normal distribution
when n is large.

Specifically, if the population has

mean p
standard deviation o

the sample mean is approximately normal with

mean p
standard deviation o//n

This is true for any distribution for which the
standard deviation is finite, but how big n
needs to be before x is close to normal will
depend on the distribution.

Practical import: If n is big, we need only find
the mean and standard deviation of z's
sampling distribution. We can then find other
things based on the normal distribution.
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The Central Limit Theorem for the
Sample Proportion
Since p can be regarded as a sample mean, the
central limit theorem applies. If the proportion

in the population is w, the distribution of p for
large n is approximately normal, with

mean

standard deviation \/7(1 —7)/\/n

The approximation is fairly good if nm and
n(l —m) are at least 10.

Here's the approximation for n = 30, = = 0.7:
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The Central Limit Theorem for an
Exponential Distribution

Here's how z approaches a normal distribution
when z; are from the exponential distribution

(probability density f(z) = e™%, with z > 0):
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