Notes for STA 250, Radford M. Neal, 2000

Relating Response Variables to
Explanatory Variables
We are often interesting in how a response
variable relates to an explanatory variable
(also called a predictor variable).
When our interest is in making predictions:

The response variable is what we want
to predict.

The predictor variable is something we
can measure to help us predict

When our interest is in cause-and-effect
explanation:

The response variable is what we think
is the effect.

The explanatory variable is what we
think is the cause.

Prediction by Averaging Nearby Points

o
> o
2 8
£
k|
£ :
o o MEE I .8 .
g BRI s
3 s e te S
3 8 BT 14 S
=" T g
: i -;‘:._.o’% r:).:,u.l
R
1000 2000 3000 4000 5000 6000
Weight of vehicle (pounds)
o
> (=3
2 8
£
g
£ g
IS} N
Qo
3 g
S o
R
T

30 40 50 60 70 80 920 100

Measure of chest injury

Linear Regression

Sometimes the response variable can be
predicted from the explanatory variable by a
straight line.

For the crashtest data:
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The straight line gives the value to predict for
the response variable for each value of the
explanatory variable.

The “Least Squares” Regression Line

We can describe a line predicting y from x by
the equation

Yy = a + bz
One criterion for the “best” line is the one

that minimizes the sum of the squared
prediction errors, that is

o wi—-3)? = Y (yi—a—bz)?
=1

=1

The values of a and b that minimize this are

S S
a=7F-bz b=r-"2="
sa: sa:

where z and y are the means, s, and sy are
the standard deviations, Szy is the covariance
of z and y, and r is the correlation of z and y.
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Derivation of the Least Squares Line

We need to find a and b that minimize
n

E =3 (yi—a—bl‘i)Q

=1

The minimum should be at a point where the
derivative with respect to a is zero:

OFE "
S0 = —2i;1(yi—a—bmi) =0

This is equivalent to

1 n
=3 (vi—a—bz) = —a—bzF = 0
" =1

>

which implies a =y —bz.

One consequence: The regression line goes
through the point (z, 7).

Derivation of Least Squares
(Continued)

At the minimum, the derivative with respect
to b should also be zero:

oFE n
5 = —Qi; (yi—a—ba:i)xi =0

Using a = y — bx, we get
n
23 (v — (F—bF) — ba;)z; = O
i=1

from which
1 n
— ; (i =) —b(zi = 7))z = 0
Notice that > (y; —¥) =0, >(z; —z) =0, and
hence ((yi —7) —b(x; — a‘c))a‘c = 0. So,
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S
which is s, —bs? = 0, or b = —2.
Sz

Some Examples of Regression Lines
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The Residuals for Observations

The residual is the difference between the
observed response and the predicted response:

residual for y; = vy, —y; = vy; — (a + b:L‘i)
The mean of the residuals from least squares

regression is always zero, but there could be a
pattern to them:
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Regression Line Residual Plot

This pattern here (negative residual for large
or small z, positive for = in the middle) shows
that the relationship is not exactly linear.
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