Scatterplots of Quantitative Variables

Relationships between two quantitative variables can be displayed by a *scatterplot*.

Scatterplots of variables from the crashtest data:

Marked Scatterplots

The relationships among two quantitative variables and a categorical variable can be shown by marking points in a scatterplot.

Here is the data on calcium and blood pressure, marked by who took the calcium (x) and who took the placebo (o):

Correlation of Two Variables

Some variables are *positively correlated*. When one is high, the other tends to be high too.

Example: height and weight of people.

Other variables are *negatively correlated*. When one is high, the other tends to be low.

Example: duration of lecture and fraction of class awake at end.

And some variables are *uncorrelated*. Whether one is high or low is not consistently related to with whether the other is high or low.

Example: age and size of nose (in adults).

Numerical Measure of Correlation

The sample covariance between x_1, \ldots, x_n and y_1, \ldots, y_n is defined to be

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

where \bar{x} and \bar{y} are the sample means of the x's and the y's.

The sample correlation between x_1, \ldots, x_n and y_1, \ldots, y_n is

$$r = \frac{s_{xy}}{s_x s_y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

where s_x and s_y are the sample standard deviations for the x's and y's.

The correlation ranges from -1 to +1.

One can also talk about the correlation in the population (often denoted by ρ).

Spearman's Rank Correlation

Like the mean and standard deviation, correlation is not resistant to outliers. Ordinary ("Pearson's") correlation also measures only *linear* relationships.

Spearman's rank correlation can be used when these could be problems. It's the ordinary correlation between the *ranks* of the data:

x	rank(x)	у	rank(y)							
2.8	6	16.4	6		80	_			0	
1.5	5	4.2	5		09					
-2.0	2	0.0	1		9					
4.4	7	78.4	7	>	40	-				
-0.5	3	0.6	3		20					
-3.0	1	0.3	2		7			C	·	
0.7	4	2.2	4		0	<u>-10 9</u>	0 0	<u> </u>	\dashv	
						-2	0	2	4	
Pearson's correlation = 0.756										
Spearman's correlation = 0.964						x				