How Regression is Affected by Correlation of the Predictor Variables

Suppose we do a regression of a response variable, y, on two predictor variables, x_1 and x_2 .

How would we expect the results to differ from regressions of y on just x_1 or on just x_2 ?

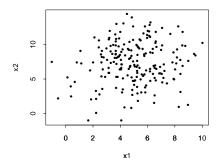
The answer depends a lot on whether x_1 and x_2 are correlated.

High correlation between predictor variables can arise when they are measuring similar things, or are both related to something else. For example:

- Grades in high school and score on an achievement test are both measures of academic achievement.
- Televisions per person and physicians per person may both be related to the wealth of the country.

Example With Uncorrelated Predictors

Here's some artificial data for 200 cases where x_1 and x_2 are nearly uncorrelated, as shown:



I let $y = 8 + 3x_1 - 5x_2 + \varepsilon$, with $\sigma_{\varepsilon} = 1$.

I then did regressions using MINITAB for y on x_1 , for y on x_2 , and for y on both x_1 and x_2 .

Results of the Regressions

The regression equation is y = -24.2 + 2.09 x1

The regression equation is y = 21.1 - 4.74 x2

Predictor	Coef	StDev	T	P
Constant	-24.187	2.829	-8.55	0.000
x1	2.0946	0.5266	3.98	0.000

S = 15.12R-Sq = 7.4%R-Sq(adj) = 6.9%

Predictor	Coef	StDev	T	P
Constant	21.061	1.127	18.69	0.000
x 2	-4.7382	0.1417	-33.44	0.000
S = 6.093	R-Sq = 8	5.0% R	Sq(adj) = 8	4.9%

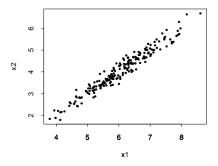
The regression equation is $y = 8.01 + 2.97 \times 1 - 4.97 \times 2$

Predictor	Coef	StDev	T	P
Constant	8.0150	0.2434	32.92	0.000
x1	2.96571	0.03545	83.66	0.000
x2	-4.96981	0.02366	-210.02	0.000

S = 1.011R-Sq = 99.6%R-Sq(adj) = 99.6%

Example With Correlated Predictors

Now let's look at data for 200 cases where x_1 and x_2 are highly correlated (r = 0.97):



This time, I let $y = 4 + 0.7x_1 + \varepsilon$, with $\sigma_{\varepsilon} = 1$.

Again, I did regressions for y on x_1 , for y on x_2 , and for y on both x_1 and x_2 .

Results of the Regressions

The regression equation is $y = 3.76 + 0.746 \times 1$

Predictor	Coef	StDev	T	P
Constant	3.7560	0.4433	8.47	0.000
x1	0.74639	0.07248	10.30	0.000
S = 0.9729	R-Sq = 3	34.9% R	u-Sq(adj) =	34.5%

The regression equation is y = 5.31 + 0.730 x2

 Predictor
 Coef
 StDev
 T
 P

 Constant
 5.3066
 0.3024
 17.55
 0.000

 x2
 0.73012
 0.07265
 10.05
 0.000

S = 0.9810 R-Sq = 33.8% R-Sq(adj) = 33.4%

The regression equation is $y = 4.03 + 0.603 \times 1 + 0.146 \times 2$

Predictor	Coef	StDev	T	P
Constant	4.0295	0.7435	5.42	0.000
x1	0.6029	0.3211	1.88	0.062
x2	0.1464	0.3191	0.46	0.647

S = 0.9748 R-Sq = 34.9% R-Sq(adj) = 34.3%

Testing Whether All Regression Coefficients are Zero

When the predictor variables are correlated, it's possible that none of the P-values for tests of whether the coefficients are zero will be significant — even though it's clear that there is a relationship of some sort with one or more of the predictors.

The F test for regression tells us how strong the evidence is that there is a real linear relationship of the response to some predictor or combination of predictors.

As for ANOVA, the F test is derived by analysing how the total sum of squares, SSTotal $= \sum (y_i - \bar{y})^2$, can be partitioned into the part due to error (residuals), SSE, and the part relating to the regression on the predictor variables, SSReg.

ANOVA for Regression

If $\hat{y}_i = b_0 + b_1 x_{i,1} + \cdots b_k x_{i,k}$ is the value the estimated regression equation predicts for y_i , the sum of squares due to error is

SSE =
$$\sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

The associated "degrees of freedom" is DFE = n-k-1, and the mean square for error is MSE = SSE/DFE, whose square root is s, the estimated residual standard deviation.

The sum of squares due to the regression is

SSReg =
$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
 = SSTotal – SSE

The mean square for regression is $MSReg = SSReg/DFReg, \ with \ DFReg = \mathit{k}.$

The proportion of the variability explained by the regression equation is

$$R^2 = SSReg/SSTotal$$

The F Test for Regression

To test $H_0: \beta_1 = \cdots = \beta_k = 0$ versus the alternative that at least one coefficient is non-zero, we use the test statistic

$$F = MSReg/MSE$$

If H_0 is true, this has the F distribution with degrees of freedom DFReg and DFE. We use this distribution to find a P-value from the observed value of F.

Here's the ANOVA and F test for the example:

The regression equation is $y = 4.03 + 0.603 \times 1 + 0.146 \times 2$

Coef	StDev	T	P
4.0295	0.7435	5.42	0.000
0.6029	0.3211	1.88	0.062
0.1464	0.3191	0.46	0.647
	4.0295 0.6029	4.0295 0.7435 0.6029 0.3211	4.0295 0.7435 5.42 0.6029 0.3211 1.88

S = 0.9748 R-Sq = 34.9% R-Sq(adj) = 34.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	100.561	50.281	52.91	0.000
Residual Error	197	187.206	0.950		
Total	199	287.767			