Facts about standard distributions

Binomial distribution

Parameters are n and p. Range is the integers from 0 to n.

Written $X \sim \text{binomial}(n, p)$.

Probability mass function:
$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, where $\binom{n}{x} = \frac{n!}{x!(n-x)!}$

Mean: E(X) = np

Variance: Var(X) = np(1-p)

Geometric distribution

Parameter is p. Range is the integers from 0 up.

Written $X \sim \text{geometric}(p)$.

Probability mass function: $f_X(x) = p(1-p)^x$

Mean: E(X) = (1 - p)/p

Variance: $Var(X) = (1-p)/p^2$

Poisson distribution

Parameter is λ . Range is the integers from 0 on up.

Written $X \sim \text{Poisson}(\lambda)$.

Probability mass function: $f_X(x) = e^{-\lambda} \lambda^x / x!$

Mean: $E(X) = \lambda$

Variance: $Var(X) = \lambda$

Exponential distribution

Parameter is β . Range is the positive real numbers.

Written $X \sim \exp(\beta)$.

Probability density function: $f_X(x) = \beta \exp(-\beta x)$

Mean: $E(X) = 1/\beta$

Variance: $Var(X) = 1/\beta^2$

Normal distribution

Parameters are μ and σ . Range is the real numbers.

Written $X \sim N(\mu, \sigma^2)$.

Probability density function: $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$

Mean: $E(X) = \mu$

Variance: $Var(X) = \sigma^2$

Table of the CDF for the N(0,1) distribution: