
STA 247 — Practice problem set #4 solutions

Question 1: Suppose you buy a disk drive from a manufacturer who makes them in two factories.
The two factories produce equal numbers of disk drives, and one cannot tell which factory a drive
was made in from looking at it. However, drives from factory A are more reliable than drives
from factory B — the time (in years) from purchase to failure for a drive from factory A has the
exp(1/3) distribution (with mean 3), whereas the time from purchase to failure for a drive from
factory B has the exp(1/2) distribution (with mean 2).

a) Suppose your drive fails after 4 years. What is the probability that it was made in factory A?

We can use Bayes’ Rule to find the probability of the event, A, of your disk being made in
factory A, given that it failed after T = 4 years of use. For this purpose, we can treat the
probability density for T as if it were a probability, since this gives the same result as treating
“after 4 years” as “between 3.9999 and 4.0001 years” — the probability of the latter is close
to 0.0002 times the probability density for T = 4, and the factor of 0.0002 will cancel in
Bayes’ Rule.

Let fT |A(t) be the probability density for the time to failure for a drive made in factory A,
and let fT |B(t) be the probability density for the time of failure for a drive made in factory
B. Since the two factories make equal numbers of drives, P (A) = P (B) = 1/2 (noting that
B = Ac). Bayes’ Rule gives

P (A|T = 4) =
(1/2) fT |A(4)

(1/2) fT |A(4) + (1/2) fT |B(4)

Substituting the density functions for the exp(1/3) and exp(1/2) distributions, we get

P (A|T = 4) =
(1/2) (1/3) exp(−4/3)

(1/2) (1/3) exp(−4/3) + (1/2) (1/2) exp(−4/2)
= 0.5649

We could compute this formula in R, or instead use R’s density function for exponential
distributions, as follows:

(1/2)*dexp(4,1/3) / ((1/2)*dexp(4,1/3)+(1/2)*dexp(4,1/2))

b) Suppose that after 4 years of use, your drive still hasn’t failed. What is the probablity that
it was made in factory A?

We can again use Bayes’ Rule, but now the event conditioned on is T > 4. We can integrate
the probability density to find that

P (T > 4|A) =
∫ ∞

4
(1/3) exp(−t/3) dt =

[

− exp(−t/3)
]∞

4
= exp(−4/3)

P (T > 4|B) =
∫ ∞

4
(1/2) exp(−t/2) dt =

[

− exp(−t/2)
]∞

4
= exp(−4/2)



Applying Bayes’ Rule, we get

P (A|T > 4) =
(1/2) P (T > 4|A)

(1/2) P (T > 4|A) + (1/2) P (T > 4|B)

=
(1/2) exp(−4/3)

(1/2) exp(−4/3) + (1/2) exp(−4/2)
= 0.6608

We can also find this answer using R’s cumulative distribution function for exponential
distributions, noting that T > 4 is the complement of T ≤ 4, whose probability is the CDF
at T = 4:

(1/2)*(1-pexp(4,1/3)) / ((1/2)*(1-pexp(4,1/3))+(1/2)*(1-pexp(4,1/2)))

Question 2: Bits sent through a communications channel are sometimes received with the wrong
value. For some channels, such errors often occur in bursts, with several errors occurring in a
row. We can model such error behaviour using a Markov chain. Let Ei be the random variable
having the value 1 if an error occurred in bit i, and 0 otherwise. Suppose that these errors have
the Markov property, so that

P (Ei = ei |Ei−1 = ei−1) = P (Ei = ei |Ei−1 = ei−1, Ei−2 = ei−2, . . . , E0 = e0)

We can then specify the error behaviour of the channel by the one-step transition probabilities for
this Markov chain. Suppose that these transition probabilities are the same at all times (ie, the
Markov chain is homogeneous). The one-step transition probabilities will then be determined by
just two numbers, P (1)(0 → 1) = P (Ei = 1 |Ei−1 = 0) and P (1)(1 → 1) = P (Ei = 1 |Ei−1 = 1).

a) Find P (Ei+3 = 1 |Ei = 1) exactly, assuming that P (1)(0 → 1) = 0.01 and P (1)(1 → 1) = 0.4.

If we start with state probabilities given by the vector [0 1], then the state probabilities after
three transitions will be

[0 1]

[

0.99 0.01
0.6 0.4

] [

0.99 0.01
0.6 0.4

] [

0.99 0.01
0.6 0.4

]

= [0.6 0.4]

[

0.99 0.01
0.6 0.4

] [

0.99 0.01
0.6 0.4

]

= [0.834 0.166]

[

0.99 0.01
0.6 0.4

]

= [0.92526 0.07474]

b) Find the steady-state probabilities for this Markov chain. In other words, find the limit of
P (Ei = 1) as i becomes very large. Express this probability as a function of P (1)(0 → 1)
and P (1)(1 → 1) and also find its numerical value for the specific values P (1)(0 → 1) = 0.01
and P (1)(1 → 1) = 0.4.



Define e to be the equilibrium (steady-state) probability of an error — that is, the limit of
P (Ei = 1) as i goes to infinity. For this probability to stay the same as i increases, it must satisfy

e = e P (1)(1 → 1) + (1 − e) P (1)(0− → 1)

What this says is that if the probability of error at time i has the steady-state value, e, then the
probability of error at time i + 1 must also be e. Solving this for e, we get

e = P (1)(0 → 1) / (P (1)(0 → 1) + 1 − P (1)(1 → 1))

So for P (1)(0 → 1) = 0.01 and P (1)(1 → 1) = 0.4, the steady state probability of error is 1/61.

Question 3: Suppose that the number of cases of Bubonic Plague in Canada in a year has the
Poisson(1.2) distribution. Suppose also that 3/4 of the people in Canada who get Bubonic Plague
die, and that the death of one such person is independent of the death of another. Find the
distribution of the number of people who die of Bubonic Plauge in Canada in a year. State and
prove a theorem that generalizes this result.

A Poisson distribution for the number of Bubonic Plague cases is what we would expect if
the large number, n, of people in Canada each have a small probability, p, of getting Bubonic
Plague, independently. The parameter of the Poisson distribution would then be np = 1.2. If
so, each person in Canada would have a probability of dying of Bubonic Plauge of (3/4)p, and
the number of deaths from Bubonic Plague would have a Poisson distribution with parameter
(3/4)np = (3/4)1.2 = 0.9.

We can generalize this to a theorem saying that if X has the Poisson(λ) distribution, and
Y |X = x has the binomial(x,p) distribution for any non-negative integer x, then Y has the
Poisson(λp) distribution. We can prove this as follows:

P (Y = y) =
∞
∑

x=y

P (X = x) P (Y = y |X = x)

=
∞
∑

x=y

λx

x!
e−λ x!

y!(x − y)!
py(1 − p)x−y

=
∞
∑

z=0

λy+ze−λ 1

y!z!
py(1 − p)z

=
(λp)y

y!
e−λ

∞
∑

z=0

(λ(1 − p))z

z!

=
(λp)y

y!
e−λ eλ(1−p)

=
(λp)y

y!
e−λp

which is the probability mass function for the Poisson(λp) distribution.


