STA 410/2102, Spring 2003 — Assignment #1
Due at start of class on February 14. Worth 17% of the final mark.

Note that this assignment is to be done by each student individually. You may
discuss it in general terms with other students, but the work you hand in should be
Yyour own.

In this assignment, you will implement a variation on the standard ¢ test for
the overall mean being zero in a one-way random effects ANOVA model, and
investigate the statistical properties of this variation using simulation.

The one-way random effects ANOVA model is appropriate in situations such
as the following: Suppose we are interested in whether treating poplar wood with
a certain chemical affects how rapidly it rots. To determine this, we take boards
produced by a number of sawmills, from locally-harvested poplar trees, and treat
half of each board with the chemical, leaving the other half untreated. We expose
these boards to the weather for a year, after which we measure the ability of each
half of each board to resist compression, as a way of measuring how much the wood
has decayed. For each board, we compute the difference in this measurement for the
treated and untreated halves. If the treatment has no effect, we would expect that
the mean of this difference will be zero, except for random sampling variation.
We therefore wish to test the hypothesis that the true population mean is zero
to determine whether the treatment has an effect. A one-sided test might be
appropriate here, but we will look at a two-sided test (as would be appropriate if
we think the treatment might actually make things worse). In doing this test, we
need to account for the possibility that the effect is different (on average) for boards
produced by different sawmills (either because of the way the sawmill works, or
because the sawmills get their trees from different regions). We intend to apply
our conclusions not just to the sawmills in the study, but to other similar sawmills
for which we did not gather data.

We can formalize models for such problems as follows. For item j in group
i (eg, board j from sawmill 7), we have a measurement, z;; (eg, the difference in
compressive strength between treated and untreated halves). We have n, groups in
all, for each of which we have measurements on n items (for simplicity, the number
of measurements is here assumed to be the same for all groups). We model the
measurements as follows:

Tij = ,u—i—az-l—bm

where p is the unknown overall mean, a; is a “random effect” for group 7, and b;; is
the random variation for a particular item (the jth in group 7). The random effects
for the groups, a;, are assumed to be independent and normally distributed with



mean zero and variance a . The item effects, b;;, are assumed to be independent
and normally distributed Wlth mean Zero and variance o2 (the same for all groups).
The values of the parameters u, og, and o2 are not known.

A standard approach to testing the null hypothesis that 4 = 0 versus the
alternative that pu # 0 is to compute the group means:

and to then do a standard ¢ test of the null hypothesis that the mean of the z; is
zero. This test is based on the following ¢ statistic:
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Note that the mean of the Z; is u, so this null hypothesis is the same as what
we wish to test. Note also that the Z; are independent, and their distribution
is normal. These are the assumptions needed for concluding that the t statistic
above has the t distribution with ny,—1 degrees of freedom, if the null hypothesis
is true. We can therefore compute the p-value of a two-sided test as P(|t| > tos),
where t, is the value of ¢ actually observed, and ¢ is assumed to have the t(n,—1)
distribution.

There’s something disturbing about this test, however. It is based on estimating
the variance of the Z; by sg (which appears in the denominator of the ¢ statistic).
The true variance of the Z; is 03 + 02/ns — the sum of the variance in the true
group means (a;) and the variance in the corresponding sample means (Z;) that
is due to sampling variability within each group. We could estimate o2 by the
following (which averages all the estimates from within each group):
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Now, what if 5 is less than s2/n,? We know that the true variance of the Z; can’t
be less than 02/n5, so if we think that s? is a good estimate of o2, we shouldn’t
believe that sg is a good estimate of the variance to use in the ¢ test if it is less
than s2/n;. But in using the standard ¢ test, we are ignoring this possibility.

We might therefore consider using a modified hypothesis test, based on the



following modified ¢ statistic:
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fmax(s3, 52/n.) /g

Unfortunately, there is no reason to think that this modified test statistic has the
t(ny—1) distribution under the null hypothesis, so a p-value computed from ¢’
on this assumption will not be uniformly distributed between 0 and 1 if the null
hypothesis is true (as p-values should be).

Nevertheless, we might investigate the properties of this modified test, to see
whether it may be useful. In particular, we might focus on the Type I and Type II
error probabilities if we decide to reject or not reject the null hypothesis according
to whether the p-value obtained is less than or greater than a specified level, «,
such as 0.05 or 0.01.

The Type I error probability is the probability of (incorrectly) rejecting if the
null hypothesis is actually true, and should be equal to «, if p-values are uniformly
distributed under the null hypothesis. This should be the case for the standard
t test. For the modified test, it may not be true, and the actual Type I error rate
may depend on the values of 03 and o2 (or more precisely, on their ratio).

The Type II error probability is the probability of not rejecting the null hy-
pothesis when it is actually false. It will depend on the actual value of p, since if
i is far from zero, we would expect to reject more often than if 4 is close to zero.
It will also depend on the values of o7 and o7.

To investigate the performance of the standard and modified tests, you should
write the following R functions (giving them names and arguments as shown):

gen.data (ng, ns, mean, varg, vars)

This function should generate a simulated data set with ng groups,
each with ns items. The value returned should be a data frame with
columns called group and value. The group id should be an integer
from 1 to ng. The value should be randomly generated from the model
with p, 02, and o7 set to mean, varg, and vars.

standard.t (d)

This function should perform a standard ¢ test of 4 = 0 on the data
in d, returning a list with an element called p.value. You may put
other elements in the list returned as well (such as the values of the
Z;), which may be helpful in debugging, and which might be of use to
someone using this procedure in practice.



modified.t (d)

This function should perform the modified ¢ test on the data in d,
returning a list with an element called p.value. Again, you may put
other elements in the list returned as well.

simulate.test (k, ng, ns, mean, varg, vars, test)

This function should simulate k data sets using gen.data (with the
indicated arguments), and apply the test given by test (which will
be either standard.t or modified.t) to each data set. The value
returned should be the vector of k p-values obtained.

estimate.rejection.prob (k, level, means, ng, ns, varg, vars, test)

This function should estimate the probabilities of the indicated test re-
jecting the null hypothesis at the given level when the data is simulated
using the given arguments to gen.data, but with the mean argument
set to each element in the vector means in turn. The estimates should
be based on k simulated data sets for each mean. The results should be
a vector of estimated rejection probabilities for each element of means.

You should use these functions to investigate the performance of the standard
and modified tests when ny, = 5 and n, = 4, for a variety of values for p, og, and
o2. To start, you should produce histograms of the distribution of p-values under
the null hypothesis for the standard and modified tests, in order to see when and
in what way the modified test behaves substantially differently. You should then
investigate the Type I and Type II error probabilities of both tests, using a level
of 0.05. You should summarize your results in this respect by producing plots of
the estimated probability of rejection as a function of pu.

You should base your estimates on at least 2000 data sets; more would be
better if it doesn’t take too long. You should estimate roughly how accurate your
estimates are.

Finally, you should discuss the implications of your results. Does it appear that
the modified test produces a practical improvement over the standard test?

Here are some R functions that you may find useful: rnorm, data.frame,
unique, mean, var, pt, max, hist, plot.



