Family name: Given names: Student ID:
CSC 363 — Test #2 — 2010-03-17

You may use results proved in the book (except in exercises or problems)

1
2
No books, notes, or other information storage systems are allowed. 3
without proving them here. T

1) [ 30 marks ] Recall that a clique in an undirected graph is a set of nodes in which every pair of nodes
is connected by an edge. The textbook defined the language CLIQUE as follows:

CLIQUE = {(G,k)|G is an undirected graph that contains a clique with k nodes }
The textbook proves that CLIQUE is NP-complete. Define the language TWO-CLIQUES as:
TWO-CLIQUES = {(G,k)|G is an undirected graph that contains two disjoint cliques of size k }

Prove that TWO-CLIQUES is NP-complete. Remember: You need to show two things to show that
a language is NP-complete.



2) [ 45 marks total | Part of the proof in the textbook that SAT is NP-complete shows that for any
language, A, in NP, which is decided by a nondeterministic Turing Machine, NV, that runs in polyno-
mial time, there is a function that maps a string w to a string (¢) that is an encoding of a Boolean
formula, ¢, that is satisfiable iff N accepts w.

The proof shows that there is an algorithm to do this reduction in polynomial time, for some fixed
nondeterministic Turing Machine, N, which runs in some polynomial time bound — say n* + 2, for
some k, where n is the length of the input. The algorithm takes the string w as input and outputs
(¢). The formula ¢ that it creates has variables that describe the “tableau” for a computation of N
on input w that halts within n* + 2 steps (we’ll let this tableau be n* + 3 by n* + 5 in size). The
rows of the tableau are successive configurations of IV, bounded by “#” symbols. The variable z; ; s
is 1 iff cell (7, ) of the tableau contains symbol s, where s € Q UT U {#}.

Recall that the formula ¢ has the form

¢ = ¢cell N Pstart N Pmove N Paccept

where ¢q] enforces that the variables describe a tableau with exactly one symbol in each cell, ¢gtart
enforces that the first configuration is the correct start configuration for input w, ¢move enforces
that each configure is followed by a possible successor configuration (same as the previous one if the
machine has halted), and ¢accept enforces that the tableau contains an accepting configuration.

Suppose that the input alphabet of machine N is ¥ = {0, 1}, the tape alphabet is " = {0, 1, blank },
the state space is Q@ = { qo, q1, Gaccepts dreject }, the start state is ¢, and the transition function,
0:QxI'—=QxT x{L,R}, is as follows:

6(QOa 0) = { (Q17 1, L)’ ((ﬂa 0, R) }a 5((10, 1) = { (Qh 1, L) }7 5((]0’ blank) = { (ql"e_jecta blanka L) }

5((]17 1) = { (Q1, 1, R) }’ 5((]17 0) = { (Qreject> 0, R) }> 6((]1? blank) = { (qacceptv blank, L) }

For all the questions below, suppose that the input is w = 011, so that n = 3, and that k£ =1, so
the tableau has 6 rows and 8 columns.

a) [ 12 marks | Fill in the two tableaus below to represent two different accepting computations on
this input.




b) [ 5 marks | How many variables are there in the formula ¢? Explain.

b) [ 9 marks | Write down the ¢gt4pt part of ¢ for this input.



c) [ 9 marks | The ¢accept part of ¢ is a disjunction (or) of literals. Write down three of these
literals, and say (and explain) how many literals are in this disjunction.

d) [ 10 marks, +1 for each correct, —1 for each wrong, minimum 0 | The ¢move part of ¢ ensures
that every 2 x 3 “window” of the tableau is legal for the machine N. For each of the following
windows, circle “Yes” or “No” to indicate whether it is legal or not (no explanation is required):

#1101 LIl|a
? ?
01 Legal? Yes No TT1 1 Legal? Yes No
g | 1]1 0|01
? ?
o 11 Legal? Yes No 0111 Legal? Yes No
@ |[0]1 # | q |1
17 Yes N 17 Yes N
TT0T1 Lega es No T |0 Lega es No
@ | 0|1 g | 1|1
? ?
T o1 Legal? Yes No T o 1 Legal? Yes No
1 q1 | blank # | qo | blank
? ?
Gnceept | 1 Slank Legal? Yes No 0 [ Dlank Legal? Yes No




3) [ 25 marks | The class coNP is defined to contain all languages whose complements are in NP — in
other words, L € coNP iff L € NP. A language L is defined to be coNP-complete if L is in coNP and
any other language in coNP is polynomial time reducible to L — in other words, L is coNP-complete
iff L € coNP and for all L' € coNP, L' <p L.

Prove that SAT is coNP-complete. You may use any parts of the proof that SAT is NP-complete
that are useful for proving this.



