Notes for CSC 310, Radford M. Neal, 2004

Solving the Dilemma of What
Order Markov Model to Use
We would like to get both:

e the advantage of fast learning of a
low-order model

e the advantage of ultimately better
prediction of a high-order model

We can do this by varying the order we use.

One scheme for this is the “prediction by
partial match” (PPM) model.

Contexts Used by PPM

PPM maintains frequencies for characters that
have been seen before in all contexts that have
occurred before, up to some maximum order.

Suppose we have so far encoded the string
this_is_th

If we are using contexts up to order two, then
we will record frequencies for the following
contexts:

Order 0: ()

Order 1: (t) (b) (1) (s) (L)
Order 2: (th) (hi) (is) (s_) (Li) (_t)

“Escaping” From a Context

The frequency tables maintained by PPM
contain only the characters that have been
seen before in that context.

Examples: if “x” has never occurred, none of
the frequency tables will have an entry for “x".
If “x" has occurred before, but not after a
“t", the frequency table for order 1 context
(t) will not contain “x".

The main idea: If we need to encode a
character that doesn’t appear in the context
we’re using, we transmit an “escape” flag, and
switch to a lower-order context.

What if we escape from every context? We
end up in a special “order -1" context, in
which every character has a frequency of 1.

Frequencies in Contexts

Two details about frequencies need to be
resolved.

First, what characters do we count in a
context?

e We might count every character that
appears following the characters making
up the context.

e \We might count a character in a context
only when it does not appear in a
higher-order context.

One could argue for either way, but we’'ll go
for the second option.

Second, what do we use as the frequency of
the “escape” symbol? There are many
possibilities. We'll just give it a frequency of
one.

7a.1

Notes for CSC 310, Radford M. Neal, 2004

Basic PPM Encoding Method
Loop until end of file:

Read the next character, c.
Let dk, dx_1, ..., d1 be the preceding K characters.

Set the context size, k, to the maximum, K.

While (dg, ..., d1) hasn’'t been seen previously:
Set kto k—1.

While k> 0 and c hasn't been seen in context (d, ...
Transmit an escape flag using context (dy, ..., d1).
Set kto k— 1.

If k =-1:

Transmit ¢ using the special “order -1" context.
Set k£ to 0.

Else
Transmit ¢ using context (dy, ..., d1)-

While k < K
Create context (dy, ..., dy) if it doesn’t exist.
Increment the count for c in context (d, ..., d1).

Set ktok+ 1.

, d1):

Frequencies After Encoding
this_is_th

Order -1:

Order 0:

_lalbil-.--zl

() Escape:l t:2 hi1 i:2s:1 _:1

Order 1:
(t)
(n)
1)
(s)
)

Order 2:
(th)
(hi)
(is)
(s2)
(-1)
(-t)

Escape:1

Escape:1
Escape:l
Escape:1 _:2
Escape:1
Escape:1
Escape:1l

Escape:l h:2
Escape:1

il
s:2

Escape:1 _:1
Escape:1

irl el

il
s:1

il t:1
s:1
h:l

Learning a Vocabulary

One reason PPM works well for files like
English text is that it can implicitly learn the
vocabulary — the dictionary of words in the
language. This is because early letters of a
word like “Ontario” almost completely
determine the remaining letters.

A more direct approach is to store a dictionary
explicitly. When a word is encountered, a short
code for it is sent, rather than the letters.

The “LZ" (for Lempel-Ziv) family of data
compression algorithms build a dictionary
adaptively, based on the text seen previously.
The “gzip” program is an example.

How Well Do These Methods Work?

I applied a version of PPM written by Bill
Teahan and the gzip program to the three
English text files (Latex) I previously used to
test Markov models.

PPM
Uncompressed | Compressed | Compression Bits per
file size file size factor character
2344 1042 2.25 3.56
20192 5903 3.42 2.34
235215 51323 4.58 1.75
GZIP
Uncompressed | Compressed | Compression Bits per
file size file size factor character
2344 1160 2.02 3.96
20192 7019 2.88 2.78
235215 70030 3.36 2.38

One other difference: On the long file, PPM
took 2.2s to encode and 2.3s to decode;
gzip needed only 0.06s to encode, and an
unmeasurably small time to decode.

7a. 2

