Notes for CSC 310, Radford M. Neal, 2004

Models Assign Probabilities to
Sequences of Symbols

Any way of producing predictive probabilities
for each symbol in turn will also assign a
probability to every sequence of symbols.
(We'll suppose sequences are terminated by a
special EOF symbol.)

We just multiply together the predictive
probabilities as we go.
For example, the string " CAT" has probability
P(X;='C)

x P(X>="'A"| X1 ="'C")

x P(X3="'T'|X; ='C', Xa ="A")

x P(X4=EOF|X; ='C’, X, ="'A", X3="T")
where the probabilities above are the ones
used to code each individual symbol.

With an optimal coding method, the number
of bits used to encode the entire sequence will
be close to the log of one over its probability.

Probabilities of Sequences with the
Laplace Model

The general form of the “add one to all the

counts” method uses the following predictive

distributions:

1 + Number of earlier occurrences of a;
I+n-1

where I is the size of the source alphabet.

This is called “Laplace’s Rule of Succession”.

P(Xn=ua;) =

So the probability of a sequence of n symbols is
(I —1)! !

el | B
U+n-1) =
where n; is the number of times a; occurs in

the sequence.

It's much easier to code one symbol at a time
(using arithmetic coding) than to encode a
whole sequence at once, but we can see from
this what the model is really saying about
which sequences are more likely.

Models With Multiple Contexts

So far, we've looked at models in which the
symbols would be independent, if we knew
what their probabilities were.

If we don’t know the probabilities, our
predictions do depend on previous symbols,
but the symbols are still “exchangeable”
— their order doesn’t matter.

Very often, this isn't right: The probability of
a symbol may depend on the context in which
it occurs — eg, what symbol precedes it.

Example: “U” is much more likely after “Q”
(in English), than after another “U".

Probabilities may also depend on position in
the file, though modeling this is less common.

Example: Executable program files may have
machine instructions at the beginning, and
symbols to help with debugging at the end.

Markov Sources

An K-th order Markov source is one in which
the probability of a symbol depends on the
preceding K symbols.

We can write the probability of a sequence of

symbols, X1, X»,..., Xy, from such a source

with K = 2 as follows (assuming we know all

the probabilities):

P(X, = ai17X2 = Gy , Xn = ain)

= P(X1=uay) x P(X2 =ay, | X1 =a;)
X P(X3 = ai3 | Xl = ai]_vXQ = aig)
X P(X4=a;, | Xo =a;,,X3 = a;3)

X P(Xn=ua;, | Xn2=0;,_, Xn-1=a;,_,)
= P(X1=uga;) X P(X2=ga;, | X1 =a;)
X M(iy,i2,i3) M (i2,13,44) - - - M (in_2,9p—1,%n)

Here, M(i,j,k) is the probability of symbol a,
when the preceding two symbols were a; and a;.

6a. 1

Notes for CSC 310, Radford M. Neal, 2004

Adaptive Markov Models

Some sources may really be Markov of some
order K, but usually not.

We can nevertheless use a Markov model for a
source as the basis for data compression.

Usually, we don’t know the “transition
probabilities”, so we estimate them adaptively,
using past frequencies. Eg, for K = 2, we
accumulate frequencies in each context,
F(i,7,k), and then use probabilities

M(i,j, k) = F(i,5,k)/ Y F(i,5,k")

kl

After encoding symbol aj in context aj,a;, We
increment F(i,7,k).

A K-th order Markov model has to handle the
first K—1 symbols specially. One approach:
Imagine that there are K symbols before the
beginning with some special value (eg, space).

Markov Models of Order 0, 1, and 2

Applied to English Text

I applied adaptive Markov models of order 0O,
1, and 2, using arithmetic coding, to three
English text files (Latex), of varying sizes.

Markov Model of Order 0

Uncompressed | Compressed | Compression | Bits per
file size file size factor character
2344 1431 1.64 4.88
20192 12055 1.67 4.78
235215 137284 1.71 4.67
Markov Model of Order 1
Uncompressed | Compressed | Compression Bits per
file size file size factor character
2344 1750 1.34 5.97
20192 11490 1.76 4.55
235215 114494 2.05 3.89
Markov Model of Order 2
Uncompressed | Compressed | Compression Bits per
file size file size factor character
2344 2061 1.14 7.03
20192 13379 1.51 5.30
235215 111408 2.11 3.79

How Large an Order Should be Used?
We can see a problem with these results.

A Markov model of high order works well with
long files, in which most of the characters are
encoded after good statistics have been
gathered.

But for small files, high-order models don’t
work well — most characters occur in
contexts that have occurred only a few times
before, or never before.

For the smallest file, the zero-order model
with only one context was best, even though
we know that English has strong dependencies
between characters!

6a. 2

