Notes for CSC 310, Radford M. Neal, 2004

Where Do the Probabilities
Come From?

So far, we've assumed that we “just know”
the probabilities of the symbols, pq,...,ps-
Note: The transmitter and the receiver must
both know the same probabilities.

This isn’t realistic. For instance, if we're
compressing black-and-white images, there’s
no reason to think we know beforehand the
fraction of pixels in the transmitted image
that are black.

But could we make a good guess? That
might be better than just assuming equal
probabilities. Most fax images are largely
white, for instance. Guessing P(White) = 0.9
may usually be better than P(White) = 0.5.

The Penalty for Guessing Wrong.

Suppose we use a code that would be optimal
if the symbol probabilities were q1,...,qs, but
the real probabilities are pq,...,pr- How much
does this cost us?

Assume we use large blocks or use arithmetic
coding — so that the code gets down to the
entropy, given the assumed probabilities.

We can compute the difference in expected
code length between an optimal code based
on qi,...,q9r and an optimal code based on the

real probabilities, p1,...,pr, as follows:

I I
Z pilog(1/q;) — ZPilOg(l/Pi)

=1 =1
I
= > pilog(pi/a)
i=1
This is the relative entropy of {p;} and {g¢;}.

It can never be negative. (See Section 2.6 of
MacKay's book.)

Why Not Estimate the Probabilities,
Then Send Them With the Data?

One way to handle unknown probabilities is
to have the transmitter estimate them, and
then send these probabilities along with the
compressed data, so that the receiver can
uncompress the data correctly.

Example: We might estimate the probabilitiy
that a pixel in a black-and-white image is
black by the fraction of pixels in the image
we're sending that are black.

One problem: We need some code for
sending the estimated probabilities. How do
we decide on that? We need to guess the
probabilities for the different probabilities...

Why This Can't be Optimal

This scheme may sometimes be a pragmatic
solution, but it can't possibly be optimal,
because the resulting code isn’'t complete.

In a complete code, all sequences of code bits
are possible (up to when the end of message is
reached). A prefix code will not be complete if
some nodes in its tree have only one child.

Suppose we send a 3-by-5 black-and-white
image by first sending the number of black
pixels (0 to 15) and then the 15 pixels
themselves, as one block, using probabilities
estimated from the count sent.

Some messages will not be possible, eg:
4

[e]
[e]

o @ O
O e e
e o o

This can’t happen, since the count of 4 is
inconsistent with the image that follows.

5b.

1




Notes for CSC 310, Radford M. Neal, 2004

Adaptive Models

We can do better using an adaptive model,
which continually re-estimates probabilities
using counts of symbols in the earlier part of
the message.

We need to avoid giving any symbol zero
probability, since its “optimal”’ codeword

length would then be log(1/0) = co. One
“kludge”: Just add one to all the counts.

Example: We might encode the 107th pixel
in a black-and-white image using the count of
how many of the previous 106 pixels are black.

If 13 of these 106 pixels were black, we
encode the 107th pixel using

P(Black) = (13+1)/(106 4+ 2) = 0.1308
Changing probabilities like this is easy with

arithmetic coding, harder with Huffman codes,
especially if we encode blocks of symbols.

Why This Isn't Just a Kludge

Adding one to all the counts may seem like a
horrible kludge for avoiding probabilities of
zero. But it is actually one of the methods
that can be justified by the statistical theory
of Bayesian inference.

Bayesian inference uses probability to represent
uncertainty about anything — not just which
symbol will be sent next, but also what the
probabilities of the various symbols are.

For our black-and-white image example, only
one probability is unknown: p; = P(Black).
(Since P(White) =1 —p;1.)

We start by selecting a prior distribution for
p1, that expresses what we know about p;
before we've seen the image we're encoding.

The Posterior Distribution

Suppose we've seen ng black pixels and ny,
white pixels so far. What is the probability
that the next pixel is black?

To find this, we first need to find the posterior
distribution for the unknown probability, pq.

This is found using Bayes' Rule:

P(p1 | pixels observed)
P(pixels observed | p1)P(p1)
/& P(pixels observed | p1) P(p1)dp1

P(p1) is our prior probability density for p1.

P(pixels observed |py) is called the likelihood.
It captures what we've learned about p; from
the data. For this example:

P(pixels observed |p1) = pi? (1 —p1)™W

The Predictive Distribution

To make a prediction, we find the average
probability of a symbol with respect to its
posterior distribution.

Suppose we've seen ng black pixels and ny,
white pixels, and suppose we’'ve choosen a
uniform prior for py, for which P(p1) = 1.

We predict that the next pixel has the
following probability of being black:

P17 (1 —p)™W
p1? (1 — p1)"wdpy

1
P(Black) = /0 plfl dp1
0

A useful fact:
1
/O p*(1 = p)ldp = ab!/(a+b+1)!
Using this, we find that
(np+nw +1)! (np+1)!ny!

TLB!nw! (nB+nW+2)!
(np+1)/(np+nw +2)

P(Black)

5b. 2




