Notes for CSC 310, Radford M. Neal, 2004

Encoding the Whole Message,
Transmitting Bits as We Go

To get close to the entropy, we need big
blocks. Why not go all the way? — Just
transmit the entire message as one block.

The problem of needing high-precision
arithmetic is now even worse. We’'ll try to
solve it by transmitting bits as soon as they
are determined.

Example: After coding some symbols, our
interval is [0.625, 0.875) = [0.1015, 0.1115).
Any number in this interval that we might
eventually transmit will start with a 1 bit.
We can transmit this bit immediately.

Expanding the Interval
After Transmitting a Bit

Once we transmit a bit that is determined by
the current interval, we can throw it away, and
then expand the interval by doubling.

Example: Continuing from the previous slide,
the interval [0.625, 0.875) = [0.1015, 0.1115)
results in transmission of a 1. We then throw
out the 1, giving the interval [0.0015, 0.0115),
and double the bounds, giving [0.0105, 0.1105).

Expanding the interval will allow us to use
representations of the bounds, v and v, that
are of lower precision.

Arithmetic Coding Without Blocks
(Preliminary Version)

1) Initialize interval [u, v) to v =0 and v = 1.

2) For each source symbol, a;, in turn:
Compute r = v — u.
i—1
Letu=u+r X pj.
Jj=1
Let v =u 4+ rp;.
While u > 1/2 or v < 1/2:
Ifu>1/2:
Transmit a 1 bit.

Let u =2(u—1/2) and v = 2(v—1/2).

If v <1/2:
Transmit a O bit.

Let u = 2u and v = 2w.

3) Transmit enough final bits to specify a
number in [u, v).

A Picture Of How it Works

Suppose we are encoding symbols from the
alphabet {a1, as, a3, aa}, with probabilities
1/3,1/6,1/6,1/3.

Here's how the interval changes as we encode
the message agy4, ap, ...

Received Received

Transmit
1

5a. 1

Notes for CSC 310, Radford M. Neal, 2004

A Problem

We hope that by transmitting bits early and
expanding the interval, we can avoid tiny
intervals, requiring high precision to represent.

Problem: What if the interval gets smaller
and smaller, but it always includes 1/27

For example, as we encode symbols, we might
get intervals of

[0.000005, 1.000005)
[0.010105, 0.110015)
[0.011015, 0.101005)
[0.01111,, 0.100105)

Although the interval is getting smaller and
smaller, we still can't tell whether the next bit
to transmit isa O or a 1.

A Solution

When a narrow interval straddles 1/2, it will
have the form

[0.01zzz, 0.10zzx)

So although we don’t know what the next it
to transmit is, we do know that the bit
transmitted after the next will be the opposite.

We can therefore expand the interval around
the middle of the range, remembering that
the next bit output should be followed by an
opposite bit.

If we need to do several such expansions,
there will be several opposite bits to output.

Arithmetic Coding Without Blocks
(Revised Version)

1) Initialize the interval [u, v) to v =0 and v = 1.
Initialize the “opposite bit count” to ¢ = 0.

2) For each source symbol, a;, in turn:

Compute r = v — u.

i—1
Letu=u-+r 3 p;

=1
Let v =u+ rp;.

Whileu>1/20orv<1/20ru>1/4 and v < 3/4:
Ifu>1/2:
Transmit a 1 bit followed by ¢ 0 bits.
Set ¢ to 0.
Let u =2(u—1/2) and v = 2(v—1/2).
Ifo<1/2:
Transmit a 0 bit followed by ¢ 1 bits.
Set ¢ to O.
Let u = 2u and v = 2uv.
Ifu>1/4 and v < 3/4:
Setctoc+ 1.
Let u=2(u—1/4) and v =2(v—1/4).

3) Transmit enough final bits to specify a number in
[u, v).

What Have We Gained?

By expanding the interval in this way, we
ensure that the size of the (expanded)
interval, v —u, will always be at least 1/4.

We can now represent uw and v with a fixed
amount of precision — we don’t need more
precision for longer messages.

We will use a fixed point (scaled integer)
representation for u and wv.

Why not floating point?

e Fixed point arithmetic is faster on most
machines.

e Fixed point arithmetic is well defined.
Floating point arithmetic may vary slightly
from machine to machine.

The effect? Machine B might not correctly
decode a file encoded on Machine A!

5a. 2

Notes for CSC 310, Radford M. Neal, 2004

Symbol Probabilities for
Arithmetic Coding

Symbol probabilities are often derived from
counts of how often symbols occurred
previously. We'll design an arithmetic coder
assuming this.

Suppose the counts for symbols aq,...,a; are
fi,..., fr times (with all f; > 0). Then we’ll
use estimated probabilities of

I
pi = fi/ X fj
=1
For arithmetic coding, it's convenient to
pre-compute the cumulative frequencies
i
F, = Y f
Jj=1
We define Fyp = 0, and use T for the total

count, F;. We will assume that T < 2", so
counts fit in A bits.

Precision of the Coding Interval

The ends of the coding interval will be
represented by m-bit integers.

The integer bounds v and v represent the
interval

ux2"™ (v+1) x 2_m)

(The addition of 1 to v allows the upper
bound to be 1 without the need to use
m-+1 bits to represent v.)

The received message will be represented as
an m-bit integer, t, plus further bits not yet
read.

With these representations, the arithmetic
performed will never produce a result bigger
than m 4 h bits.

Encoding Using Integer Arithmetic

u+ 0, v2"—-1

c+ 0

For each source symbol, a;, in turn:
r—v—u-+1
veu+ [(rxF)/T] -1
v u+ |(r*Fi_1) /T

While u > 2™/2 or v < 2™/2 or u > 2™/4 and v < 2™ x 3/4:

If u>2m/2:
Transmit a 1 bit followed by ¢ 0 bits
c+0
u+ 2% (u—2"/2), v+ 2% (v—2"/2)+1
If v < 27/2:
Transmit a O bit followed by ¢ 1 bits
c+ 0
u+—2xu, ve2*xv+1
If w>2™/4 and v < 2™ x 3/4:
c+—c+1
u+ 2% (u—2"/4), v+ 2%x(v—2"/4)+1

Transmit two final bits to specify a point in the interval

If u<2™/4:
Transmit a 0 bit followed by ¢ 1 bits
Transmit a 1 bit

Else
Transmit a 1 bit followed by ¢ O bits
Transmit a 0 bit

Precision Required

For this procedure to work properly, the loop
that expands the interval must terminate.
This requires that the interval never shrink to
nothing — ie, we must always have v > u.

This will be guaranteed as long as

[(r*F)/T] > [(rxFi_1)/T]

This will be so as long as f; > 1 (and hence
F,>F,_1+1)and r>T.

The expansion of the interval guarantees that
r>2M/44 1.

So the procedure will work as long as

T <2™/4 4 1. If our symbol counts are bigger
than this, we have to scale them down (or use
more precise arithmetic, with a bigger m).

However, to obtain near-optimal coding, T
should be a fair amount less than 2™/4 4 1.

5a. 3

Notes for CSC 310, Radford M. Neal, 2004

Decoding Using Integer Arithmetic

u+0, ve2"—-1
t « first m bits of the received message

Proving That the Decoder
Finds the Right Symbol
To show this, we need to show that if
Fi1 < [(G-u+1)*xT-1)/r] < F
then

Until last symbol decoded:
r~v—u-+1
w+ [(t—u+1)«xT—-1)/r|
Find i such that F,_; <w < F;
Output a; as the next decoded symbol

veut|(r*xF)/T| -1

uu+ [(rxF,_1)/T]

While u >2™m/2 or v < 2™/2 or u > 2™/4 and v < 2™ % 3/4:
If w > 2m/2:

ut|(r+«F_1)/T] <t < ut|[(rxF)/T] -1

This can be proved as follows:

Fia € [(((—u+1)+T=1)/r] < ((t—ut1)xT-1)/r

u+ 2% (u—2"/2), v+ 2% (v—2"/2)+1 = r*«F, /T < t—u+1-1/T
t+ 2x(t—2m/2) 4+ next message bit _ B
If v < 2m/2: > ut|(r*F1)/T] < ut+(@t—u) =t
u—2xu, ve—2*xv+1 F > [(t-—ut1)sT—1)/r]
t+ 2xt 4 next message bit N DT 1 .
If u > 2™ /4 and v < 2™ x 3/4: = F 2 [(t—ut+)+T-1)/r] +
u+ 2% (u—2"/4), v+ 2x(v—2"/4)+1 = F > (t-u+1)«xT-1)/r — (r—1)/r + 1
t <+ 2% (t—2m/4) + next message bit o raFJT > t—ut 11T — (r—1)/T + r/T
= rxF/T > t—u+1
= ut[(rxF)/T] -1 >t

Summary

e Arithmetic coding provides a practical way
of encoding a source in a very nearly
optimal way.

e Faster arithmetic coding methods that
avoid multiplies and divides have been
devised.

¢ However: It's not necessarily the best
solution to every problem. Sometimes
Huffman coding is faster and almost as
good. Other codes may also be useful.

e Arithmetic coding is particularly useful for
adaptive codes, in which probabilities
constantly change. We just update the
table of cumulative frequencies as we go.

History of Arithmetic Coding

Elias — around 1960.

Seen as a mathematical curiosity.

Pasco, Rissanen — 1976.

The beginnings of practicality.

Rissanen, Langdon, Rubin, Jones — 1979.

Fully practical methods.

Langdon, Witten/Neal/Cleary — 1980's.

Popularization.

Many more... (eg, Moffat/Neal/Witten)

Further refinements to the method.

5a. 4

