Notes for CSC 310, Radford M. Neal, 2004

Ways to Improve Instantaneous Codes

Suppose we have an instantaneous code for
symbols a1, ...,a;, with probabilities pq,...,ps.
Let l; be the length of the codeword for a;.

Under each of the following conditions, we can
find a better instantaneous code, with smaller
expected codeword length:

o If p1 <pp and 1 < lo:

Swap the codewords for a1 and as.

e If there is a codeword of the form zby,
where z and y are strings of zero or more
bits, and b is a single bit, but there are no
codewords of the form zb’z, where z is a
string of zero or more bits, and b # b.

Change all the codewords of the form zby
to zy. (Improves things if none of the p;
are zero, and never makes things worse.)

The Improvements in Terms of Trees

We can view these improvements in terms of
the trees for the codes. Here's an example:

[o]
\ _— 010 a;, p, =011
o]

T 011 a,, p, =0.20

2 P = U
| ‘/ 100 az p3=0.14

10

/ T~ 101 | a,p,=012

4, Pq = 0.
110 as, Ps = 0.13

T 111 ag, Pg =0.30

Two codewords have the form 01... but

none have the form 00... (ie, there’'s only one
branch out of the 0 node). We can therefore
improve the code by deleting the surplus node.

Continuing to Improve the Example
The result is the code shown below:

- 00 a;, p; =011

o]
/ T~ o | a,p,=020

- 100 as p3 =014
[10]
/ T~ 1 a, p,=0.12

\ | 1m0 ag, ps = 0.13
[n]
T~ ag, Pg = 0.30

Now we note that ag, with probability 0.30,
has a longer codeword than a1, which has
probability 0.11. We can improve the code by
swapping the codewords for these symbols.

The State After These Improvements
Here's the code after this improvement:

L ag pg = 0.30

[o]
/ T~ o] a,p,=020

| w0 as p; =014
[0]
/ T~ 11] a,p,=012

\‘ - ‘/ 110

T~ 1w

ag, p; =0.13

a;, p; =011

In general, after such improvements:

e The most improbable symbol will have a
codeword of the longest length.

e There will be at least one other codeword
of this length — otherwise the longest
codeword would be a solitary branch.

e The second-most improbable symbol will
also have a codeword of the longest
length.

3b.

1

Notes for CSC 310, Radford M. Neal, 2004

A Final Rearrangement

The codewords for the most improbable and
second-most improbable symbols must have
the same length. The most improbable
symbol’s codeword also has a “sibling” of the
same length.

We can swap codewords to make this sibling
be the codeword for the second-most
improbable symbol.

For the example, the result is

L w ag, pg = 0.30
T~ ot | a,p,=020

[o]

_— 100 a, p; =014

[0]
/ [101] agps=013

\‘ _ ‘/ 110

T~

a, p, =012

a;, p; =011

Huffman Codes

We can use these insights about code trees to
try to construct optimal codes.

We will prove later that the resulting Huffman
codes are in fact optimal.

We'll concentrate on Huffman codes for a
binary code alphabet. Non-binary Huffman
codes are similar, but slightly messier.

Huffman Procedure for Binary Codes

Here’s a recursive procedure to construct a
Huffman code for a binary code alphabet:

procedure Huffman:

inputs: symbols ai,...,ar
probabilities p1,...,pr
output: a code mapping ai,...,a; to codewords
if I =2:
Return the code a1 — 0, a2 — 1.
else

Let j1,...,4r be a permutation of 1,...,TI
for which pj, > --- > pj,.

Create a new symbol a’, with associated
probability p’ = pj, , + pj,-

Recursively call Huffman to find a code for

aj,...,aj ,,a’ With probabilities p;,...,pj; ,,p'.
Let the codewords for aj,,...,a;_,,a’ in
this code be wi,...,wr_o,w'.
Return the code
aj, = wi, ..., G5, > w2, a;_, — w0, aj; — w'l.

Proving that Binary Huffman
Codes are Optimal

We can prove that the binary Huffman code
procedure produces optimal codes by
induction on the number of symbols, I.

For I = 2, the code produced is obviously
optimal — you can't do better than using one
bit to code each symbol.

For I > 2, we assume that the procedure
produces optimal codes for any alphabet of
size I — 1 (with any symbol probabilities),
and then prove that it does so for alphabets
of size I as well.

3b. 2

Notes for CSC 310, Radford M. Neal, 2004

The Induction Step

Suppose the Huffman procedure produces
optimal codes for alphabets of size I — 1.

Let L be the expected codeword length of the
code produced by the procedure when it is
used to encode the symbols aq, ..., ay, having
probabilities py, ..., pr. Without loss of
generality, let's assume that p; > p;_1 > py for
allie{1,...,1—2}.

The recursive call in the procedure will have
produced a code for symbols ay, ..., aj_o, a,
having probabilities pq, ..., pr_o, p’, With

p = pr—1 + p;. By the induction hypothesis,
this code is optimal. Let its average length be
L.

The Induction Step (Continued)

Suppose some other instantaneous code for
ai, ..., ar had expected length less than L.
We can modify this code so that the
codewords for ay_1 and aj are “siblings”

(ie, they have the forms z0 and z1) while
keeping its average length the same, or less.

Let the average length of this modified code
be L, which must also be less than L.

From this modified code, we can produce
another code for ay, ..., a;_o, a’. We keep the
codewords for aq, ..., aj_o the same, and
encode o/ as z. Let the average length of this
code be L.

The Induction Step (Conclusion)

We now have two codes for aq, ...
for aq, ...

, ay and two
,ar_o, a'. The average lengths of
these codes satisfy the following equations:

L = L'+pi_1+p;

L = L'+pr_1+pr

Why? The codes for ai, ..., ar are like the
codes for aq, ..., aj_n, a’, except that one
symbol is replaced by two, whose codewords
are one bit longer. This one additional bit is
added with probability p’ = pr_1 + p;.

Since L' is the optimal average length, L' < L'.
From these equations, we then see that L < E,
which contradicts the supposition that L < L.

The Huffman procedure therefore produces
optimal codes for alphabets of size I. By
induction, this is true for all I.

What Have We Accomplished?

We seem to have solved the main practical
problem: We now know how to construct an
optimal code for any source.

But: This code is optimal only if the
assumptions we made in formalizing the
problem match the real situation.

Often they don’t:
e Symbol probabilities may vary over time.
e Symbols may not be independent.

e There is usually no reason to require that
X1, Xp, X3, ... be encoded one symbol at
a time, as c(X1)c(X2)e(X3) - -.

We would require the last if we really needed
instantaneous decoding, but usually we don't.

3b.3

Notes for CSC 310, Radford M. Neal, 2004

Example: Black-and-White Images

Recall the example from the first lecture, of
black-and-white images. There are only two
symbols — “white” and “black’”. The
Huffman code is white — 0, black — 1.

This is just the obvious code. But we saw
that various schemes such as run length
coding can do better than this.

Partly, this is because the pixels are not
independent. Even if they were independent,
however, we would expect to be able to
compress the image if black pixels are much
less common than white pixels.

Entropy of a Binary Source

For a binary source, with symbol probabilities
p and 1 — p, the entropy as a function of p
looks like this:

H(p)

H0 01 02 03 04 05 06 07 08 09 1.0

0 01 02 03 04 05 06 07 08 09 10
p

H(0.1) = 0.469, so we hope to compress a
binary source with symbol probabilities of

0.1 and 0.9 by more than a factor of two. We
obviously can’t do that if we encode symbols
one at a time.

Solution: Coding Blocks of Symbols

We can do better by using Huffman codes to
encode blocks of symbols.

Suppose our source probabilities are 0.7 for
white and 0.3 for black. Assuming pixels are
independent, the probabilities for blocks of
two pixels will be

white white 0.7 x 0.7 = 0.49
white black 0.7 x 0.3 =0.21
black white 0.3 x 0.7 =0.21
black black 0.3 x 0.3 =0.09

Here's a Huffman code for these blocks:
WW — 0, WB+ 10, BW — 110, BB+ 111

The average length for this code is 1.81,
which is less than the two bits needed to
encode a block the obvious way.

3b. 4

