Notes for CSC 310, Radford M. Neal, 2004

Tradeoffs Choosing Codeword Lengths

The Kraft-McMillan inequalities imply that to
make some codewords shorter, we will have to
make others longer.

Example: The obvious binary encoding for
eight symbols uses codewords that are all
three bits long. This code is instantaneous,
and satisfies the Kraft inequality, since:

+++++++=

Suppose we want to encode the first symbol
using only two bits. We'll have to make some
other codewords longer — eg, we can encode
two of the other symbols in four bits, and the
remaining five symbols in three bits, since

2+++++++=

How should we choose among the possible
codes?

Formalizing Which Codes are the Best:
Probabilities for Source Symbols

We'd like to choose a code that uses short
codewords for common symbols and long ones
for rare symbols.

To formalize this, we need to assign each
symbol in the source alphabet a probability.
Symbols aq,...,a; will have probabilities
written as pi,...,pr- We assume that these
probabilities don’t change with time.

We also assume that symbols in the source

sequence, X4, Xp, ..., Xy, are independent:
P(Xy = Qjq, Xo = Qiny -+, Xn = aiN)

= Diy Piy """ Piy

These assumptions are really too restrictive in

practice, but we'll ignore that for now.

Expected Codeword Length

Consider a code whose codewords for symbols
ai,...,ar have lengths I1,...,l;. Let the
probabilities of these symbols be pq,...,p;.
We define the expected codeword length for
this code to be

I
L = L(C,X) > pil;
=1
This is the average length of the codeword
encoding a single source symbol. But since
averaging is a linear operation, the average
length of a coded message with N source
symbols is just NL. For example, when N=3:

I I I
Z Z Z Diy Pis Pig (l’Ll + l’L'Q + l’L3)

i1=1 i2=1 i3=1

thll'i' Zp1212+ Zp1313 = 3L

i1=1 ip=1 i3=1

We aim to choose a code for which L is small.

Optimal Codes

We say a code is optimal for a given source
(with given symbol probabilities) if its average
length is at least as small as that of any other
code.

There can be many optimal codes for the
same source, all with the same average length.

The Kraft-McMillan inequalities imply that if
there is an optimal code, there is also an
optimal instantaneous code. More generally,
for any uniquely decodable code with average
length L, there is an instantaneous code with
the same average length.

Questions: Can we figure out the length of
an optimal code from the symbol probabilities?
Can we find such an optimal code, and use it
in practice?
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Shannon Information Content

A plausible proposal:

The amount of information obtained when we
learn that X =a; is logo(1/p;) bits, where
p; = P(X=a;).

Example:

We learn which of 64 equally-likely possibilities
has occurred. The Shannon information
content is log,(64) = 6 bits. This makes
sense, since we could encode the result using
codewords that are all 6 bits long, and we
have no reason to favour one symbol over
another by using a code of varying length.

For further intuitions about why this is a
plausible measure of information, see Section
4.1 of MacKay's book.

The Entropy of a Source

The Shannon information content pertains to
a single value of the random variable X. To
find out how much information learning the
value of X conveys on average, we find the
expected value of the Shannon information
content.

This is called the entropy of the random
variable (or source), and is symbolized by H:

I
> piloga(1/p;)
=1

where p; = P(X =a;).

H(X) =

When the logarithm is to base 2, as above,
the entropy has units of bits. (We could use
some other base; when base e is used, the
units are called “nats”.)

Information, Entropy, and Codes
How does this relate to data compression?

A vague idea: Since receipt of symbol q;
conveys logs(1/p;) bits of “information”, this
symbol “ought” to be encoded using a
codeword with that many bits. Problem:
log>(1/p;) isn't always an integer.

A consequence: If this is done, then the
expected codeword length will be equal to the

entropy: Y/_; piloga(1/p;).

A vague conjecture: The expected
codeword length for an optimal code ought to
be equal to the entropy.

But it's easy to see that this can’t quite be
right as stated. Consider pg = 0.1, p; = 0.9,
so H = 0.469. But the optimal code for a
symbol with only two values obviously uses
codewords 0 and 1, with expected length of 1.

A Property of the Entropy

For any two probability distributions, p1,...,pr
and q1,-..,qr:

! 1 ! 1
> pilogs () < Y pilogs ()
i=1 D; q;

=1 1
Proof:

First, note that for all x > 0, Inz <z—1. So
logorz < (z—1)/In2.

We can now show that the LHS-RHS above is:

o ene ()02 G)] = Bese(3)
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Proving We Can’t Compress to
Less Than the Entropy

We can use this result to prove that any
uniquely decodable binary code for X must
have expected length of at least H(X):

Proof:

Let the codeword lengths be l4,...,I;, and
define K = >/, 274 and ¢; = 274i/K.

The g; can be seen as probabilities, so

< XI: p;10g> <1>

i=1 4

! 1
H(X) = ) p;logs ()
i=1 p;

I I
= Y pilog2(2"K) = Y pi(li +1092 K)

=1 i=1
Since the code is uniquely decodable, K <1
and hence logs, K < 0. From this, we can
conclude that 3 p;l; > H(X).

Shannon-Fano Codes

If we can't choose codewords with the “right”
lengths, log>(1/p;), we can try to get close.

Shannon-Fano codes are constructed so that
the codewords for the symbols, with
probabilities p1,...,pr, have lengths

l; = [loga(1/py)]

Here, [z] is the smallest integer greater than
or equal to .

The Kraft inequality says such a code exists,
since

I 1 I 1 I

Z - < Z Sloasliiay — Zpi =1

S ol = 2 ologr(/m) T
Example:

pi: 0.4 0.3 0.2 0.1
logo(1/p;): 1.32 1.74 232 3.32

l; =[log2(1/p)]: 2 2 3 4
Codeword: 00 01 100 1100

Expected Lengths of
Shannon-Fano Codes

The expected length of a Shannon-Fano code

for X, if symbols have probabilities p1,...,ps, is

I I
dopili = ) piloga(1/p)]
i=1 i=1
I
< > pi(1+1092(1/p;))
i=1

I I
= > pi + > piloga(1/p;))

i=1 i=1

= 14 H(X)

This gives an upper bound on the expected
length of an optimal code for X. However, the
Shannon-Fano code itself may not be optimal
(though it sometimes is).

What Have We Shown?

We’'ve now proved the following (Theorem 5.1
in MacKay’s book):

A source X can be encoded using an
instantaneous code, C, with expected
length, L(C, X), satisfying

H(X) < L(C,X) < H(X)+1

Two main theoretical problems remain:

e Can we find optimal codes, which actually
minimize L7

e Can we somehow close the gap between
H(X) and H(X) + 1 above, to show that
the entropy is the exactly correct way of
measuring the average information content
of a source?
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