Notes for CSC 310, Radford M. Neal, 2004

Two Problems of Information Theory

e How can we represent information
compactly, in as few bits as possible?

Applications:
— Compressing text or program files (gzip)
— Compressing images (JPEG)
— Compressing video (MPEG)

Text and programs need to be compressed
losslessly, but for images and video, we
might accept /ossy compression, in which
the decompressed data isn’'t exactly the
same as the original.

e How can we transmit or store information
reliably, when our bits are subject to error?

Applications:
— ECC memory
— Error correction on CDs
— Communication with space probes

How Will We Tackle These Problems?

e We'll first look at some simple, practical
ways in which we might try to solve them.

e We’'ll then develop a mathematical theory
that shows how we can solve the problems
systematically, and how well we can expect
to do.

Result: Two famous theorems proved by
Claude Shannon in 1948.

e This theory is elegant, but it doesn't
immediately produce practical solutions to
the original problems that are as good as
the theory says are possible. That took
decades more work.

Result: Practical methods based on
“arithmetic coding” and “low-density
parity-check codes” that are very nearly
optimal.

But That'’s Not the End

e The theory and the optimal algorithms
solve only part of the problem — we are
left with the problem of finding an
appropriate model for a source of data or
for a channel.

e The optimal algorithms are fairly fast, but
perhaps not fast enough for everyone — a
non-optimal, less theoretical method might
be better for some applications.

e The theory applies to problems of a
certain sort. Problems with other
characteristics need a different theory.

The Tools You'll Need

What background do you need to understand
the theory and methods we'll look at?

Probability has a central role in both data
compression and error-correcting codes. Only
fairly elementary probability theory will be
needed, however.

Linear algebra is the basis for practical
error-correcting codes. Only fairly elementary
stuff is needed here too, with one twist — we
deal not with vectors of real numbers, but
with vectors of bits, with modulo 2 arithmetic.

Plus, you'll need a modicum of skill at
understanding and programming algorithms.

la. 1

Notes for CSC 310, Radford M. Neal, 2004

Example: Compressing a
Black-and-White Image

Some images consist of an array of black and
white pixels — eg, FAX images have this form.

An example of a 10 by 50 image:

0000000000000 0000000000000000000000000000000000000
0008000980000 0000000ee00000ee000000000000000000000
OO®e000ee00000000000eee000eee000000000000000000000
ooe 000000800000 000e00e8088000000000000000000000
900000000000 080080088000000000000000000000
oe 9000080000000 0e0000088e0000ee00000eee0e88000
000080000800 00000000088e0000008000e008000ee00e000e00
OO®e000ee000e0000000ee00000ee000e00e000ee00e000e00
000080000800 080000000ee00000ee0000ee0000ee00e000e00
0000000000000 0000000000000000000000000000000000000

If we encode black by 1 and white by 0, the
number of bits needed for an image will equal

the number of pixels — 500 bits for this image.

But can we do better? There are many more
white pixels than black pixels, and both
sometimes come in long runs. Can we exploit
these properties in a compression scheme?

A Simple Compression Technique:
Run-Length Coding

We can try to take advantage of the many
long runs of white pixels (and some long runs
of black pixels) by coding an entire run in just
one byte (8 bits).

We'll use the first bit of a byte to specify the
pixel colour (O=white, 1=black). The other
seven bits specify the length of the run in
binary (from 0 to 127).

We'll look at the pixels in “raster-scan” order
— left to right, top to bottom. Assume that
we know the dimensions of the image without
having to encode that.

With this scheme we can compress a run of
127 white pixels to just 8 bits, for a
compression ratio of 127/8 = 15.9! Not all
images have such long runs, however.

How Well Does it Work?

Let’'s see how well it works on “Hi Mom" :

0000000000000 0000000000000000000000000000000000000
00080000800000000000880000088000000000000000000000
OO®e000ee00000000000eee000eee000000000000000000000

o OO..OO0.0000000..O...OOOOOOOOOOOOOOOOOOOOOOOO

9000000000000 e 0000000000000 000000000
(3.4 .DO0.0000000..OOOOD..OOOO..OOOO....D...OOO
000800000000000080000008000000000008008000800
00980009800 080000000ee00000ee000e00e000ee00e000e00
000080000800 080000000ee00000ee0000ee0000ee00e000e00
000000000000 0000O0O00O0O0O000O0O0000000O0O0000O0O000000000000

Here are the first few runs:

Run Encoding
52 white 00110100
2 black 10000010
3 white 00000011
2 black 10000010
11 white 00001011
2 black 10000010

Altogether, there are 55 white runs and 54
black runs. Encoding each run takes 8 bits,
for a total of 8 x (554 54) = 872 bits.

We've ended up expanding the data rather
than compressing it!

An Improvement
Fortunately, the scheme can be improved.

Each run of white pixels must be followed by a
run of black pixels, and vice versa. So we
don’t need to specify the colour for each run,
just the colour for the first run.

A detail: If the 7 bits encoding the length of
the run have their maximum value (127), then
we assume the next run has the same colour.
That way we can encode runs longer than 127
using several 7-bit counts.

This improvement reduces the number of bits
needed to encode the ”"Hi Mom” image to

1 + 7 x (554 54) = 764 — but that’s still
worse than just using one bit for each of the
500 pixels!

la. 2

Notes for CSC 310, Radford M. Neal, 2004

A Scheme That's Better for the
“Hi Mom” Image

One problem is that although our scheme
compresses really long runs by a factor of
15.9, it isn’t so good at the shorter runs that
occur in the “Hi Mom" image.

A solution: Use fewer bits to specify the
length of a run. Let's see what happens when
we use three bits (for a maximum length of 7).

We'll now need to encode the first run of 52
white pixels as seven runs of length 7, plus an
eighth run of length 3, requiring a total of 24
bits to encode. But we more than make up for
this by using fewer bits for the short runs:

2 runs of length 52: 24 bits each
4 runs of length 23: 12 bits each
3 runs of length 11: 6 bits each
100 runs of length <7: 3 bits each

Total: 14+2x244+4%x1243x64+100%x3 = 459 bits.

Is This as Good as it Gets?

If we think the “Hi Mom” image is typical of
the ones we want to encode, we could expect
that by using run-length coding with 3-bit
lengths, we could reduce the space needed to
store an image by roughly 8%, on average.

We might hope for greater compression. Two
possibilities:

e If the “Hi Mom” image is typical, runs of
black pixels are usually shorter than runs
of white pixels. Maybe we should encode
their lengths with different numbers of bits.

e Consider these encoded bits: 011 000 010.
They represent a run of 3 white pixels, a
run of 0 black pixels, and a run of 2 white
pixels — the same as a single run of 5
white pixels. Encoding will never produce
this sequence, so we’'re wasting space.

Modeling and Coding

These two possible improvements apply to
two conceptually distinct aspects of data
compression:

Modeling is the development of knowledge of
the types of images (or other data) that we're
expecting will be stored (or transmitted) with
the data compression program we're designing.

Run-length coding is based on a model saying
that long runs of the same colour are likely.

Coding is the way we use the knowledge in
our model to chose specific bit patterns to
represent the data.

If our model tells us how long we expect the
runs to be, we can then choose how many bits
to use for a run length so as to minimize the
average number of bits used.

Both aspects are essential. In particular, for data
compression to be possible we must have some
knowledge of the type of data that is likely.

Probabilistic Modeling and Coding

The modeling and coding for the run-length
example was ad hoc — we just did whatever
seemed to work well.

A more general approach is to build a model
based on probabilities of symbols, and use
these probabilities to choose a coding method.

Probabilistic modeling is an art, though there
are general principles to help.

Probabilistic coding is a mathematical and
algorithmic problem, which has been largely
solved. The mathematical solution is
Shannon’s noiseless coding theorem of 1948.
The algorithmic solutions took a bit longer.

la. 3

Notes for CSC 310, Radford M. Neal, 2004

A Probabilistic Model for
Black-and-White Images

One simple way to capture the structure
expected in images such as “Hi Mom” is to
model the conditional probabilities for a pixel
to be black given the colours of the pixels
above it and to the left.

If our knowledge of the source of the images
tells us what these conditional probabilities
are, we can use a static model.

More likely, we don’t know the probabilities, so
we'll instead have to learn them as we go
through the image — an adaptive model.

A data compression program that combines
such a simple adaptive model with a
near-optimal method of coding compresses the
“Hi Mom” image to 256 bits, a compression
ratio of 500/256 = 1.95.

Data Compression Topics We'll Cover

e Lossless data compression must allow the
data to be decompressed back to the
original file. For what coding schemes is
such decompression possible?

e Among such “uniquely decodable” coding
schemes, which produce the shortest
length codes, on average?

e Shannon’s noiseless coding theorem:
Average code length with such optimal
encoding approaches the source's entropy.

e How we can encode optimally in practice
using “arithmetic coding”.

e Basics of source modeling, including
“dictionary” techniques that combine
modeling and coding.

e Later... A bit about lossy data compression.

la. 4

