Notes for CSC 310, Radford M. Neal, 2004

Product Codes

A product code is formed from two other
codes Cq, of length N1, and Cp, of length N».
The product code has length N1 N».

We can visualize the N1 N, symbols of the
product code as a 2D array with N; columns
and No rows.

Definition of a product code: An array is a
codeword of the product code if and only if

e all its rows are codewords of Cq
e all its columns are codewords of Cp

We will assume here that C; and Cy are linear
codes, in which case the product code is also
linear. (Why?)

Dimensionality of Product Codes

Suppose C; is an [N1, K1] code and C» is an
[N, K5] code. Then their product will be an
[N1N>, K1K»] code.

Suppose C1 and Co are in systematic form.
Here's a picture a codeword of the product
code:

Ki Ni-Ky
Ky Bits of the message Check bits computed
being encoded from the rows
N,- K Check bits computed Check bits computed
2 from the columns from the check bits

The dimensionality of the product code is not
more than KiK», since the message bits in the
upper-left determine the check bits. We'll see
that the dimensionality equals K71 K> by showing
how to find correct check bits for any message.

Encoding Product Codes

Here's a procedure for encoding messages
with a product code:

1. Put K1K> message bits into the upper-left
K5 by K; corner of the N, by Ny array.

2. Compute the check bits for each of the
first Ko rows, according to Cj.

3. Compute the check bits for each of the N;
columns, according to Cs.

After this, all the columns will be codewords
of Co, since they were given the right check
bits in step (3). The first K5 rows will be
codewords of Cq, since they were given the
right check bits in step (2). But are the last
Np — K5 rows codewords of C17

Yes! Check bits are linear combinations of
message bits. So the last N, — K5 rows are
linear combinations of earlier rows. Since these
rows are in C1, their combinations are too.

Minimum Distance of Product Codes

If C1 has minimum distance d; and C» has
minimum distance dp, then the minimum
distance of their product is did».

Proof:

Let u; be a codeword of C; of weight d; and
up be a codeword of Cy of weight dy. Build a
codeword of the product code by putting uq in
row ¢ of the array if up has a 1 in position 3.
Put zeros elsewhere. This codeword has
weight dqds.

Furthermore, any non-zero codeword must
have at least this weight. It must have at least
do rows that aren’t all zero, and each such row
must have at least d; ones in it.

11b.1




Notes for CSC 310, Radford M. Neal, 2004

Decoding Product Codes

Products of even small codes (eg, [7,4]
Hamming codes) have lots of check bits, so
decoding by building a syndrome table may be
infeasible.

But if C; and C5 can easily be decoded, we
can decode the product code by first decoding
the rows (replacing them with the decoding),
then decoding the columns.

This will usually not be a nearest-neighbor
decoder (and hence will be sub-optimal,
assuming a BSC and equally-likely messages).

One advantage of product codes: They can
correct some burst errors — errors that come
together, rather than independently.

How Good Are Simple Codes?

Shannon’s noisy coding theorem says we can
get the probability of error in decoding a
block, pg, arbitrarily close to zero when
transmitting at any rate, R, below the
capacity, C — if we use good codes of large
enough length, N.

For repetition codes, as N increases, pg — 0,
but R — 0 as well.

For Hamming codes, as N = 2¢ — 1 increases,
R — 1, but pg — 1 as well, since there's bound
to be more than one error in a really big block.

How Good are Products of Codes?

Let C be an [N, K] code of minimum distance
d (guaranteed to correct ¢t = |(d—1)/2] errors).

How good is the code obtained by taking the
product of C with itself p times?

Length: Np = NP

Rate: R, = KP/NP = (K/N)? - 0

Distance: dp = dP

Relative distance: pp = dp/Np = (d/N)P — 0

The code can correct up to about dp/2 errors,
corresponding to a proportion of errors of pp/2.

For a BSC with error probability f, we expect
that for large N, the proportion of erroneous
bits in a block will be very close to f. (This is
the “Law of Large Numbers".)

So for large N, these product codes are unlikely
to correct all errors, and also have a low rate!

Good Codes Aren't Easy to Find

In the 56 years since Shannon’s noisy coding
theorem, many schemes for creating codes
have been found, but most of them don’t
allow one to reach the performance promised
by theorem.

They can still be useful. For example, error
correction in computer memory necessarily
works on fairly small blocks (eg, 64 bits).

Performance on bigger blocks is irrelevant.

But in other applications — computer
networks, communication with spacecraft,
digital television — we could use quite big
blocks if it would help with error correction.

How can we do this in practice?

11b. 2




Notes for CSC 310, Radford M. Neal, 2004

Getting to Capacity for the BEC

We can get near-error-free transmission for
the binary erasure channel, at any rate below
capacity, using a practical method.

We use a linear [N, K] code, defined by a set
of M = N— K parity-check equations:

c1,1v1+eipvo+ -+ vy = 0
cp1v1+eo2va+ - +eonyvy = 0
emivi+eypv2+ - +eynvvy = 0

For the BEC, any bit received as 0 or 1 is
guaranteed to be correct. To decode, we fill in
these known values in the equations above,
and then try to solve for the unknown values,
where the bit was received as an erasure.

When Will This BEC Decoding
Method Succeed?

If the probability of an erasure is f, and N is
large, there will very likely be around N f
erasures in the received data (the Law of
Large Numbers again).

So the decoder will be solving M equations in
U unknowns, where U is very likely to be near
Nf

These equations will be consistent, since the
correct decoding is certainly a solution.

The correct decoding will be the unique
solution — which the decoder is guaranteed
to find — as long as U out of the M
equations are independent.

Picking the Code at Random

Suppose we pick a code — specified by the
parity-check coefficients, c¢;; — at random.

How likely is it that the equations that we
need to solve to decode a transmission that
has U erasures will have a unique solution?

Imagine randomly picking the parity-check
equations after we receive the transmission
with U erasures. How many equations would
we expect to have to pick to get U
independent equations?

Once we have i independent equations, the
probability that the next equation picked will
be dependent on these will be

2 1

U = oU—i
since there are 2 ways of combining the
previous equations, and 2V possible equations.

Picking the Code at Random
(Continued)

The expected number of dependent equations
picked before we get U independent ones is

Uil 1(_1)—1_U—1 1
= 2U—i 2U—t = 2U—i _ q

Reordering the terms, we can see that this is
small:

141/341/74 - <141/241/44--- < 2

Hence, we likely need M to be only slightly
larger than U, which is likely to be no more
than slightly larger than Nf.

So with a random code, we will be likely to
correct all erasures when N is large as long as
f<M/N=(N—-K)/N =1—R. In other words,
as long as R < 1—f. As we saw in tutorial, the
capacity of the BEC is equal to 1—f, so we've
achieved the promise of Shannon’s theorem.

11b. 3




Notes for CSC 310, Radford M. Neal, 2004

What about the BSC?

A similar argument using randomly-chosen
codes is used in the proof of Shannon’s noisy
coding theorem for the BSC. We'll look at a
sketch of this proof.

But unlike the random codes for the BEC,
the random codes used in this proof are
completely impractical.

We'll then look briefly at random codes of a
different kind, whose parity-check matrices are
mostly zeros. These “Low Density Parity
Check Codes” can be used in practice, and
allow near-error-free transmission at close to
capacity.

11b. 4




