Notes for CSC 310, Radford M. Neal, 2004

Finding Minimum Distance From a
Parity-Check Matrix

We can find the minimum distance of a linear
code from a parity-check matrix for it, H.

The minimum distance is equal to the smallest
number of linearly-dependent columns of H.

Why? A vector u is a codeword iff uHT = 0.
If d columns of H are linearly dependent, let u
have 1s in those positions, and Os elsewhere.
This u is a codeword of weight d. And if there
were any codeword of weight less than d, the
1s in that codeword would identify a set of
less than d linearly-dependent columns of H.

Special cases:
e If H has a column of all zeros, then d = 1.
e If H has two identical columns, then d < 2.

e For binary codes, if all columns are distinct
and non-zero, then d > 3.

Example: The [7,4] Hamming Code

We can define the [7,4] Hamming code by the
following parity-check matrix:

0001111
0110011
1010101

Clearly, all the columns of H are non-zero, and
they are all distinct. So d > 3. We can see
that d = 3 by noting that the first three
columns are linearly dependent, since

0 0 0 0
o+ |1|+]1] = |0
1 0 1 0

This produces 1110000 as an example of a
codeword of weight three.

Since it has minimum distance 3, this code
can correct any single error.

Hamming Codes

We have seen that a binary [N, K] code will
correct any single error if all the columns in its
parity-check matrix are non-zero and distinct.

One way to achieve this: Make the N — K
bits in successive columns be the binary
representations of the integers 1, 2, 3, etc.

This is one way to get a parity-check matrix
for a [7,4] Hamming code:

0001111
0110011
1010101

When N is a power of two minus one, the
columns of H contain binary representations
of all non-zero integers up to 2NVN—X — 1.

These are the called the Hamming codes.

Encoding Hamming Codes

By rearranging columns, we can put the
parity-check matrix for a Hamming code in
systematic form. For the [7,4] code, we get

0111100
1011010
1101001

Recall that a systematic parity check matrix of
the form [PT | Iy_g] goes with a systematic
generator matrix of the form [Ix | P]. We get

[oNeNeN
[cNeoN Ne
O~ OO
= OO0OO
il ]
R PO
= O R~

We encode a message block, s, of four bits, by
computing t = sG. The first four bits of t are
the same as s; the remaining three bits are
“check bits”. Note: The order of bits may
vary depending on how the code is constructed.
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Decoding Hamming Codes

Consider the non-systematic parity-check matrix:

0001111
H = 0110011
1010101

Suppose t is sent, but r =t + n is received.
The receiver can compute the syndrome for r:
z = rH' = (t+n)HT = tH +nHT = nHT
Note that tHT = 0 since t is a codeword.

If there were no errors, n =0, so z = 0.

If there is one error, in position 2z, then nHT
will be the ith column of H — which contains
the binary representation of the number ¢!

So to decode, we compute the syndrome, and
if it is non-zero, we flip the bit it identifies.

If we rearranged H to systematic form, we
modify this procedure in corresponding fashion.

Syndrome Decoding in General

For any linear code with parity-check matrix
H, we can find the nearest-neighbor decoding
of a received block, r, using the syndrome,
z=rHT.

We write the received data as r =t + n, where
t is the transmitted codeword, and n is the
error pattern, so that z = nHT.

A nearest-neighbor decoding can be found by
finding an error pattern, n, that produces the
observed syndrome, and which has the
smallest possible weight. Then we decode r
asr—n.

Building a Syndrome Decoding Table

We can build a table indexed by the syndrome
that gives the error pattern of minimum
weight for each syndrome.

We initialize all entries in the table to be empty.

We then consider the non-zero error patterns,
n, in some order of non-decreasing weight.
For each n, we compute the syndrome,
z=nHT, and store n in the entry indexed by
z, provided this entry is currently empty. We
stop when the table has no empty entries.

Problem: The size of the table is exponential
in the number of check bits — it has
2N—=K _ 1 entries for an [N, K] code.

Example: The [5,2] Code

Recall the [5,2] code with this parity-check
matrix:

11000
00110
10101

Here is a syndrome decoding table for this
code:

z n

001 00001
010 00010
011 00100
100 01000
101 10000
110 10100
111 01100

The last two entries are not unique.
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Hamming's Sphere-Packing Bound

We'd like to make the minimum distance as
large as possible, or alternatively, have as
many codewords as possible for a given
distance. There’'s a limit, however.

Consider a binary code with d = 3, which can
correct any single error. The ‘“spheres” of
radius one around each codeword must be
disjoint — so that any single error leaves us
closest to the correct decoding.

For codewords of length N, each such sphere
contains 14+ N points. If we have m codewords,
the total number of points in all spheres will
be m (14 N), which can’'t be greater than the
total number of points, 2.

So for binary codes that can correct any single
error, the number of codewords is limited by

m < 2V/1+N)

A More General Version of the Bound

A binary code of length N that is guaranteed
to correct any pattern of up to ¢t errors can’'t
have more than this number of codewords:

(1 (5)+(5) -+ (1)

The kth term in the brackets is the number of
possible patterns of k£ errors in N bits:

N\ N!
(k) Tk (N=k)!

If the above bound is actually reached, the
code is said to be perfect. For a perfect code,
the disjoint spheres of radius ¢t around
codewords cover all points.

Very few perfect codes are known. Usually, we
can't find a code with as many codewords as
would be allowed by this bound.

Hamming Codes are Perfect

For each positive integer ¢, there is a binary
Hamming code of length N =2¢—1 and
dimension K = N —c¢. These codes all have
minimum distance 3, and hence can correct
any single error.

They are also perfect, since

2N/(14N) = 2271/ (142°-1) = 22 71me = oK

which is the number of codewords.

One consequence: A Hamming code can
correct any single error, but if there is more
than one error, it will not be able to give any
indication of a problem — instead, it will
“correct” the wrong bit, making things worse.

The extended Hamming codes add one more
check bit (ie, they have one more row of all 1s
to the parity-check matrix). This allows them
to detect when two errors have occurred.

The Gilbert-Varshamov Bound

The sphere-packing bound is an upper limit
on how many codewords we can have. There's
also a lower limit, showing there is a code
with at least a certain number of codewords.

There is a binary code of length N with
minimum distance d that has at least the
following number of codewords:

(e (5)+(3) -+ (1)

Why? Imagine spheres of radius d—1 around
codewords in a code with fewer codewords
than this. The number of points in each
sphere is the sum above in brackets, so the
total number of points in these spheres is less
than 2. So there's a point outside these
spheres where we could add a codeword that
is at least d away from any other codeword.
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