Notes for CSC 310, Radford M. Neal, 2004

Generator Matrices

We can arrange a set of basis vectors for a
linear code in a generator matrix, each row of
which is a basis vector.

A generator matrix for an [N, K] code will
have N rows and N columns.

Here's a generator matrix for the [5,2] code
looked at earlier:

00111

11001
Note: Almost all codes have more than one
generator matrix.

Encoding Blocks Using a
Generator Matrix

We can use a generator matrix for an [N, K]
code to encode a block of K message bits as
a block of K bits to send through the channel.

We regard the K message bits as a row
vector, s, and multiply by the generator
matrix, G, to produce the channel input, t:

t = sG

If the rows of G are linearly independent, each
distinct s will produce a different t, and every t
that is a codeword will be produced by some s.

Example: Encoding the message block (1,1)
using the generator matrix for the [5,2] code
given earlier:

{11]“’238“:[11110]

Parity-Check Matrices

Suppose we have specified an [N, K] code by
a set of M = N — K equations satisfied by any
codeword, v:

€110 + C12V2 +--+ CiNUn = 0
C21 V1 + Cr2 Vs +--+ vy = 0
Cr,1 V1 + Cr,2 V2 +---+ CuNUN = 0

We can arrange the coefficients in these
equations in a parity-check matrix, as follows:

€11 G112 " CGnN
Co1 Cop "7 Gy
Cum1 Cmp2 CuN

If C has parity-check matrix H, we can check
whether v is in C by seeing whether vHT = 0.

Note: Almost all codes have more than one
parity-check matrix.

Example: The [5,2] Code

Here is one parity-check matrix for the [5, 2]
code used earlier:

11000
00110
10101

We see that 11001 is a codeword as follows:

11001] =[00 0]

coOoORrRR
O~ ErHOO
HOROR

But 10011 isn't a codeword, since
[1 0

=

1001 1] =[110]

= OO

[eNeNelN
Or O
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Examples: Repetition Codes and
Single Parity-Check Codes

An [N, 1] repetition code has the following
generator matrix (for N = 4):

(111 1]

Here is a parity-check matrix for this code:

1 001
0101
0011

One generator matrix for the [N, N — 1] single
parity-check code is the following:

1 001
0101
0011

Here is the parity-check matrix for this code:

1111]

Manipulating the Parity-Check Matrix

There are usually many parity-check matrices
for a given code. We can get one such matrix
from another using the following “elementary
row operations’:

e Swapping two rows.

e Multipling a row by a non-zero constant
(not useful for Z5).

e Adding a row to a different row.
These operations don't alter the solutions to
the equations the parity-check matrix represents.
Ex: This parity-check matrix for the [5,2] code:

(1 1 0 0 0]
00110
|1 010 1]

can be transformed into thi

alternative:

oMo
o~O ©

1
0
1

== O
= O O

Manipulating the Generator Matrix

We can apply the same elementary row
operations to a generator matrix for a code, in
order to produce another generator matrix,
since these operations just convert one set of
basis vectors to another.

Example: Here is a generator matrix for the
[5,2] code we have been looking at:
00111
11001
Here is another generator matrix, found by
adding the first row to the second:

00111
11110

Note: These manipulations leave the set of
codewords unchanged, but they don’t leave
the way we encode messages by computing
t = s@G unchanged!

Equivalent Codes

Two codes are said to be equivalent if the
codewords of one are just the codewords of
the other with the order of symbols permuted.

Permuting the order of the columns of a
generator matrix will produce a generator
matrix for an equivalent code, and similarly for
a parity-check matrix.

Example: Here is a generator matrix for the
[5,2] code we have been looking at:
00111
11001
We can get an equivalent code using the
following generator matrix obtained by moving
the last column to the middle:

00111
11100
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Generator and Parity-Check Matrices
In Systematic Form

Using elementary row operations and column
permutations, we can convert any generator
matrix to a generator matrix for an equivalent
code that is is systematic form, in which the
left end of the matrix is the identity matrix.

Similarly, we can convert to the systematic
form for a parity-check matrix, which has an
identity matrix in the right end.

For the [5, 2] code, only permutations are
needed. The generator matrix can be
permuted by swapping columns 1 and 3:

00111:>10011
11001 01101

When we use a systematic generator matrix to
encode a block s as t = s@G, the first K bits
will be the same as those in s. The remaining
N — K bits can be seen as “check bits”.

Relationship of Generator and
Parity-Check Matrices
If G and H are generator and parity-check
matrices for C, then for every s, we must have

(sG)HT = 0 — since we should only generate
valid codewords. It follows that

GHT =0

Furthermore, any H with N — K independent
rows that satisfies this is a valid parity-check
matrix for C.

Suppose G is in systematic form, so
G = [Ig | P]

for some P. Then we can find a parity-check
matrix for C in systematic form as follows:

H = [-PT | Iy_k]

since GHT = —Ix P+ PIy_i = 0. (Note that
—PT=PT in 2,.)

More on Hamming Distance

Recall that the Hamming distance, d(u,v),
of two codewords u and v is the number of
positions where u and v have different
symbols.

This is a proper distance, which satisfies the
triangle inequality .

d(u,w) < d(u,v) +d(v,w)

Here's a picture showing why:
u: 011001101110

v: 011001010001

w: 011110010010
Here, d(u,v) = 6, d(u,v =15), and d(u,w) = 7.

Minimum Distance and Decoding

A code’'s minimum distance is the minimum of
d(u,v) over all distinct codewords u and v.

If the minimum distance is at least 2t + 1, a
nearest neighbor decoder will always decode
correctly when there are t or fewer errors.

Here's why: Suppose the code has distance
d>2t+ 1. If u is sent and v is received,
having no more than t errors, then

e d(u,v) <t.
e d(u,u’) > d for any codeword u’ # u.
From the triangle inequality:
d(u,u’) < d(u,v) +d(v,u’)
It follows that
d(v,u’) > d(u,u’)—d(u,v) > d—t > (2t4+1)—t > t+1

The decoder will therefore decode correctly to
u, at distance t, rather than to some other u’.
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A Picture of Distance and Decoding

Here's a picture of codewords (black dots) for
a code with minimum distance 2t 4+ 1, showing
how some transmissions are decoded:

()

Incorrect decodings with
more than t errors

Correct decoding with
lessthan t errors

Correct decoding with Z
morethan t errors

Minimum Distance for Linear Codes

To find the minimum distance for a code with
oK codewords, we will in general have to look
at all 2K (2K —1)/2 pairs of codewords.

But there’s a short-cut for linear codes...

Suppose two distinct codewords u and v are a
distance d apart. Then the codeword u — v will
have d non-zero elements. The number of
non-zero elements in a codeword is called its
weight.

Conversely, if a non-zero codeword u has
weight d, then the minimum distance for the
code is at least d, since 0 is a codeword, and
d(u,0) is equal to the weight of u.

So the minimum distance of a linear code is
equal to the minimum weight of the 2K_1
non-zero codewords. (This is useful for small
codes, but when K is large, finding the
minimum distance is difficult in general.)

Examples of Minimum Distance and
Error Correction for Linear Codes

Recall the [5,2] code with the following
codewords:

00000 00111 11001 11110

The three non-zero codewords have weights of
3, 3, and 4. This code therefore has minimum
distance 3, and can correct any single error.

The single-parity-check code with N = 4 has
the following codewords:

0000 0011 0101 0110
1001 1010 1100 1111

The smallest weight of a non-zero codeword
above is 2, so this is the minimum distance of
this code. This is too small to guarantee
correction of even one error. (Though the
presence of a single error can be detected.)
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