CSC 310, Spring 2004 — Assignment #2
Due at start of lecture on March 15. Worth 10% of the course grade.

Note that this assignment is to be done by each student individually. You may discuss
it in general terms with other students, but the work you hand in should be your own.

For this assignment, you will write and evaluate programs to compress black-and-white
images using arithmetic coding in conjunction with various adaptive models.

An arithmetic coding package written in C is available for use in this assignment.
You may obtain it from /u/radford/310 on CDF or from the course web page. The
file Documentation explains how to use the procedures in this package, and briefly
describes some example programs. Note that for this assignment you will need only
the procedures for encoding and decoding bits (procedures for larger alphabets are
provided for other uses). You may use any programming language for the assignment
that is able to call the procedures in this package, but using anything other than C
or C++ would probably be perverse. You should also note that if you try doing this
assignment on a Windows system you will encounter problems because the procedures
provided are designed for Unix/Linux systems. In particular, by default, Windows files
are in “text” mode, which causes some bytes to be translated into more than one byte.
If you want to use Windows, you will have to change to using “binary” mode, which
may require changing the procedures so they don’t use standard input and standard
output.

Five images produced by converting Postscript documents to bitmaps are also available
on CDF (called pagel.mono to page5.mono) or from the course web page. These images
are stored as one bit per pixel (0=white, 1=black) in raster scan order, top to bottom,
left to right (with the low-order bit of each byte coming first). All the images are 576
pixels in width and 700 pixels in height (you may fix these dimensions as constants in
your program). You should evaluate your compression methods on these five images,
which you may take to be typical of the ones which the compression program would
be used for. You can display one of these images, or an image obtained by using
your program to compress and decompress one of them, using the following command
on CDF:

display -size 576x700 mono:image-file

where image-file is the name of the file containing the image (eg, pagel.mono). The
web page also has the five images in .bmp format so that you can view them in a
browser. (Note, however, that these .bmp files are not the ones you should try to
compress, since they contain extra header information in addition to the actual pixels.)

Programs called encmono and decmono are provided for compressing and decompressing
these images using a simple adaptive model with a two-pixel context. You may refer
to these programs to learn how to use the bit input/output and arithmetic coding
procedures, but you will want to write your programs in a more general way in order
to do this assignment.



Part 1. For the first part of this assignment, you should write programs for compress-
ing and decompressing images using contexts of various sizes. The program discussed
in lectures and the very similar encmono and decmono programs use a two-pixel context
when predicting a pixel value, consisting of the pixel to the left and the pixel above.
You should evaluate how much better (or worse) compression is obtained when using
larger contexts. In particular, you should evaluate how well the following contexts work
(the first being the one used by encmono and decmono):
HNN

NIl NN NN
1 DU L] .
L2l L N NN

2 pixels 4 pixels 8 pixels 16 pixels

Here, the box with the question mark represents the pixel currently being encoded
or decoded, and the other boxes represent those pixels, which will already have been
encoded or decoded, that make up the context of nearby pixels to be used in predicting
the current pixel. The number of contexts is equal to the number of possible combi-
nations of values for these nearby pixels, which is 4, 16, 256, and 65536 for the four
contexts shown above. When encoding pixels near the top, left, or right edge of the
image, you should pretend that any of these neighboring pixels that are outside the
image are 0 (white).

For each context, you should adaptively estimate the probabilities for white and black
pixels using the counts of how many white and black pixels occurred previously. To
these counts, you should add some constant, and then divide by the total to obtain
probabilities. You should try adding the constant one (the Laplace scheme discussed
in class), and also try the alternative of adding the constant 0.1. Since the arithmetic
coding procedures take integer counts, you should implement adding 0.1 by keeping
counts that are ten times the actual counts — so you add 10 to the appropriate count
each time you see a new pixel, and initialize the counts to 10 for the Laplace scheme
and to 1 for the alternative scheme.

The four possible contexts and the two possible schemes for initializing counts produce
a total of eight methods for compressing images. You should try out all these methods
on each of the five images provided. Since that’s forty runs, you won’t want to do them
all manually. The testpages command file shows how (for the encmono and decmono
programs) the process of trying out a method on all five images can be automated.
It compresses and decompresses each of these images, checks that the decompressed
image is identical to the original (using the cmp command), and outputs the size (in
bytes) of the compressed image. You should do something similar to automate your
tests.

You should hand in the output of these tests (along with the command files used to run
them), and a discussion of the results — for example, if one method is better for some



images but not for other images, you should try to explain this in terms of what the
images are like. You should also hand in a listing of your programs, which should be
written in good programming style. You should not hand in eight different encode and
decode programs, one for each combination of context and count scheme. You should
instead write one encode program and one decode program, which take arguments
specifying the context and count scheme to be used. You may write this program to
be more general than required for this assignment if you wish. In particular, you may
write a single program to handle both this part of the assignment and the next, though
you may also write separate programs for the two parts, if you wish.

Part 2. For the second part of this assignment, you should try to find a way of
getting better compression than you obtained with the methods in Part 1 by adjusting
the size of the context according to how much data is available, similarly to how the
PPM method discussed in lectures works. However, the specifics of PPM, such as the
use of an “escape” symbol, may not be appropriate for this application, in which the
alphabet is binary. You should try out various schemes that you think are promising,
and evaluate them on the five images provided. Among the issues to consider are what
smaller context to use if the largest context doesn’t have enough data, what constitutes
“enough” data, and how to update the counts in the smaller contexts (recall the two
options for this discussed in lectures with regards to PPM).

You should hand in a description of the schemes you tried, the encode and decode
programs that implement them, the results of your tests (and any command files used
to run them), and a discussion of the results.



