Notes for CSC 310, Radford M. Neal, 2002

Merits of Probabilistic Models

N-th order Markov models and PPM models
cleanly separate the model for symbol
probabilities from the coding based on those
probabilities. Such models have several
advantages:

e Coding can be nearly optimal (eg, using
arithmetic coding).

e It's easy to try out various modeling ideas.

e You can get very good compression, if you
use a good model.
The big disadvantage:

e The coding and decoding involves
operations for every symbol and every bit,
plus possibly expensive model updates,

which limits how fast these methods can be.

Merits of Dictionary Methods

Compression using adaptive dictionaries may
be less elegant, but has it’s own advantages:

e Dictionary methods can be quite fast
(especially at decoding), since whole
sequences of symbols are specified at once.

e The idea that the data contain many
repeated strings fits many sources quite
well — eg, English text, machine-language
programs, files of names and addresses.

The main disadvantage is that compression
may not be as good as a model based method:

e Dictionaries are inappropriate for some
sources — eg, noisy images.

e Even when dictionaries work well, a good
model-based method may do better —
and can’'t do worse, if it uses the same
modeling ideas as the dictionary method.

The LZ77 Scheme

This scheme was devised by Ziv and Lempel in
1977. There are many variants, including the
method used by gzip.

The idea of LZ77 is to use the past text as
the dictionary — avoiding the need to
transmit a dictionary separately. We need a
buffer of size W that contains the previous S
characters plus the following W — S characters.

We encode up to W — S characters at once by
sending the following:

e A pointer to a past character in the buffer
(an integer from 1 to S).

e The number of characters to take from
the buffer (an integer from 0 to W—-S5-1,
or maybe more).

e The single character that follows the
string taken from the buffer.

An Example of LZ77 Coding

Suppose we look at the past 16 characters,
and look ahead at the next 8 characters.

After encoding the first 16 characters of the
following string, we would proceed as follows:

\Way_over_t here_i\s_where_\it_i
No match with string in w ndow.

Transmt (-,0,s)

Nay_over_t here_i s_where_i\t_
Match 3 back with _

Transmt (3,1,w)

Way_over_t here_is_where_it _J|i

Match with 9 back with here_i
Transmt (9,6,t)

S

S

S

8a.1

Notes for CSC 310, Radford M. Neal, 2002

Encoding the Pointers

If we look back S characters, we can encode a
pointer back in [log>(S)] bits.

If we look forward W — S characters, we can
encode the length of the match in
[logo>(W — S)] bits.

The character after the match can be encoded
in [logx(q)] bits, if we have g symbols.

If these lengths are multiples of 8, we can
quickly output these codes as one or more
bytes.

An alternative: Use Huffman or arithmetic
coding. This will give better compression, but
won't be as fast.

LZ77 Encoding and Decoding Speed

Even if writing the codes for the match is fast,
finding the longest match may be slow.

Techniques such as hashing can speed this up,
however. The gzip program builds a hash
table for all strings of length three, then
searches within the hash bucket for the next
three characters to find the longest match.

Decoding can be very fast. Reading the codes
is very quick if they are take up fixed numbers
of bytes. Even if we use Huffman codes, table
look up on the next few bits (as in gzip) can
be pretty fast. Once we have the codes, we
just copy text from the buffer.

The LZ78 Scheme

Ziv and Lempel introduced another scheme in
1978, in which the dictionary is kept explicitly,
and contains phrases from the entire past text.

In the LZW variant, due to Welch, we start
with a dictionary containing just the alphabet.
We then proceed as follows:

e Find the longest match of following
characters with a dictionary item.

e Transmit the index of that dictionary item.

e Add the matched phrase plus the
character following it to the dictionary.

e Continue coding with the character

following the matched phrase.

Codes for dictionary indexes will have to get
longer as we go, but at a fairly slow rate.

8a. 2

