Notes for CSC 310, Radford M. Neal, 2002

Models With and Without Context

Data compression depends on us having a
model of the source — which provides
probabilities for each symbol.

So far, we've assumed that symbols are
independent, and that their probabilities don’t
depend on their position in the file.

Very often, this isn’t true: The probability of
a symbol may depend on the context in which
it occurs — eg, what symbol precedes it.
Example: “U"” is much more likely after “Q"
(in English), than after another “U".

Probabilities may also depend on position in

the file, though this is less common. Example:

Executable program files may have machine
instructions at the beginning, and symbols for
debugging at the end.

Static and Adaptive Models

Models also differ in whether the probabilities
(in a given context) are fixed — a static
model — or whether the probabilities adapt
based on what we learn by looking at previous
symbols.

A static model is appropriate if we know a lot
about the source even before we see any
symbols. For example: We may know a lot
about frequencies of letters in English.

An adaptive model is appropriate if we don’t
know a lot — maybe not even the language
the docment is in — or if the source itself
varies. Example: English documents vary
depending on whether they are reports of
football games, legal judgements, recipies, etc.

Coding Based on Symbol Frequencies

One common adaptive scheme: Encode
symbols based on probablities obtained from
the frequencies (counts) of how often the
symbol occurred earlier in the document.

The decoder can know the same frequencies,
since it will have already decoded the earlier
symbols.

We need to avoid any zero frequencies —
since they will make encoding that symbol
impossible. One scheme: Set the frequencies
to one at the beginning, then increment them
as symbols are seen.

Example: Adaptively Compressing
Black-and-White Images

Suppose we have images (of some fixed
dimensions) in which pixels are either black or
white. We may expect large regions of white
pixels and large regions of black pixels, and
wish to use that knowledge to compress them.

But how large will the regions be? We
probably don’'t know, so we use an adaptive
scheme, with contexts defined by pixels above
and to the left:

0000 @
| 18| @
@)

6b.

1

Notes for CSC 310, Radford M. Neal, 2002

The Encode Program

/* Initialize model. */

for (a = 0; a<2; a++) {
for (1 = 0; 1<2; 1++) {
freqo[al[1] = 1;
freqifal[1] = 1;
}

/* Encode image. */

for (i = 0; i<Height; i++) {
for (j = 0; j<Width; j++) {
a =i==0 7 0 : image[i-1]1[j];
1= j==0 7 0 : image[i][j-1];
encode_bit (image[il[j]1,
freqo0[a] [1],freqi[al [1]);
if (image[il[j1) {

/* Set frequencies of 0’s */
/* and 1’s to be equal. */

/* Find current context. */
/* Encode pixel. */

/* Update frequencies for */

freqi[a] [1] += 1; /* this context. */
}
else {

freqo[al[1] += 1;
}

if (freq0[a] [1]+freqi[a]l[1]>Freq_full) { /* Avoid huge */

freq0[al[1] = (freqO[al[1]+1) >> 1;
freqil[al[1] = (freqilal[1]+1) >> 1;

/* frequencies */

The Decode Program

/* Initialize model. */

for (a = 0; a<2; a++) {
for (1 = 0; 1<2; 1++) {
freqo[al[1]
freqi[al[1]

=13 /* Set frequencies of 0’s */
=1; /* and 1’s to be equal. */
}

/* Decode and write image. */

for (i = 0; i<Height; i++) {
for (j = 0; j<Width; j++) {
a = i==0 7 0 : image[i-1]1[j];
1= j==07 0 : image[i][j-1];
image[i][j] = /* Decode pixel. */
decode_bit(freq0[a][1],freq1[a]l[1]);
printf ("%cc",image[i1[j] 7 *#°> : *.°,

/* Find current context. */

j==Width-1 ? \n’ : ’ 7);
if (image[i][j]) { /* Update frequencies for */
freqi[a][1] += 1; /* this context. */
}
else {

freqO[a] [1] += 1;

if (freq0[al[1]+freqi[al[1]1>Freq_full) { /* Avoid huge */
freq0[a] [1] = (freq0[a]l[1]+1) >> 1; /* frequencies */
freqi[al[1] = (freqi[al[1]+1) >> 1;

Example: Adaptive Text Compression

We can also adaptively compress text, using
counts of how often letters (and other
symbols) have occurred earlier.

With many symbols, we gain efficiency by
reordering them by decreasing frequency, so
that we usually don't have to search very far.

The main encode program:

frequencies f; /* Structure holding character frequencies */

int ch; /* Character to encode */

int index; /* Index of character to encode */

initialize_frequencies(&f); /* Set all frequencies to 1 */

for (55) { /* Loop through characters. */
ch = getc(stdin); /* Read the next character. */
if (ch==EQF) break; /* Exit loop on end-of-file.*/
index = f.symbol_to_index[ch]; /* Translate to an index. */
encode_symbol(index,f.cum_freq); /#* Encode that symbol. */
update_frequencies (&f ,index); /* Update symbol frequencies*/

}

index = f.symbol_to_index [EOF_symbol]l;/* Encode the EOF symbol. */

encode_symbol(index,f.cum_freq);

Procedure to Increment a Frequency
for (i = index; f->freqli]l==f->freqli-1]; i--) ; /* Find new index. */

if (i<index) {

sym_i = f->index_to_symboll[il; /* Update the translation */
sym_index = f->index_to_symbol[index]; /* tables if the symbol has*/
f->index_to_symbol[i] = sym_index; /* moved. */

f->index_to_symbol[index] = sym_i;
f->symbol_to_index[sym_i] = index;
f->symbol_to_index[sym_index] = ij;

}
f->freq[i] += 1; /* Increment the frequency */
while (i>0) { /* count for the symbol and*/
i-=1; /* update the cumulative */
f->cum_freq[i] += 1; /* frequencies. */
}
if (f->cum_freq[0]>Freq_full) { /* See if frequency counts */
f->cum_freq[No_of_symbols] = 0; /* are past their maximum. */
for (i = No_of_symbols; i>0; i--) { /* If so, halve all counts */
f->freq[i] = (f->freq[i]+1) >> 1; /* (keeping them non-zero).*/
f->cum_freq[i-1] = f->cum_freq[i] + f->freq[il;
}
}

6b. 2

