Notes for CSC 310, Radford M. Neal, 2002

Getting Close to the Entropy
Using Arithmetic Coding

e We encode symbols from S in blocks of
size n, where n is quite large.

e Assuming independence, the probability of
the block s;,...,8;, IS pp = Pi; = Di,-

e We can find the interval for this block by
subdividing (0,1) n times — without
explicitly considering all possible blocks.

e We can then find a binary codeword for
this block that is no longer than

[log(1/pp)] + 1 < log(1/pp) + 2

e The average codeword length for blocks
will be less than

24> pplog(1/py) = 24+H(S™) = 24+nH(S)
b

e The average number of bits transmitted per
symbol of S will be less than H(S) + 2/n.

How Well it Works (So Far)
Big advantage:

We can get arbitrarily close to the entropy
using big blocks, without an exponential
growth in complexity with block size.

Big disadvantage (so far):

If we use big blocks, many block probabilities
will be tiny. For the procedure to work, we will
have to use highly precise arithmetic.

(The number of bits of precision needed for a
good approximation will go up linearly with
blocksize, and the time for arithmetic involving
such operands will also grow linearly.)

Fortunately, this disadvantage can be overcome.

Encoding the Whole Message,
Transmitting Bits as We Go

To get close to the entropy, we need big
blocks. Why not go all the way? — Just
transmit the entire message as one block.

The problem that we need high-precision
arithmetic is now even worse. We'll try to
solve it by transmitting bits as soon as they
are determined.

Example: After coding some symbols, our
interval is [0.625, 0.875) = [0.1015, 0.1115).
Any number in this interval that we might
eventually transmit will start with a 1 bit.
We can transmit this bit immediately.

Expanding the Interval
After Transmitting a Bit

Once we transmit a bit that is determined by
the current interval, we can throw it away, and
then expand the interval by doubling.

Example: Continuing from the previous slide,
the interval [0.625, 0.875) = [0.101,, 0.1115)
results in transmission of a 1. We then throw
out the 1, giving the interval [0.0015, 0.0115),
and double the bounds, giving [0.0105, 0.1105).

Expanding the interval will allow us to use
representations of [and « that are of lower
precision.

5b.

1

Notes for CSC 310, Radford M. Neal, 2002

Arithmetic Coding Without Blocks
(Preliminary Version)

1) Initialize interval [,) to I =0 and u = 1.
2) For each source symbol, s;, in turn:
Compute r = u —[.
i=1
Leti=1+r ¥ pj.
Jj=1
Let u =14 rp;.

While I > 1/2 or u < 1/2:
Ifi>1/2:
Transmit a 1 bit

Let I=2(1—1/2) and u = 2(u — 1/2).

A Picture Of How it Works

Suppose we are encoding symbols from the
alphabet {s1, so, s3, s4}, with probabilities
1/3,1/6,1/6,1/3.

Here's how the interval changes as we encode
the message sg4, so, ...

Received Received
% >

Ifu<1/2: 1 ~ L
Transmit a O bit Trarlsmlt Trarlsnlt Trarcl)srnlt
Let I = 2] and u = 2u.
3) Transmit enough final bits to specify a
number in [, u).
A Problem A Solution

We hope that by transmitting bits early and
expanding the interval, we can avoid tiny
intervals, requiring high precision to represent.

Problem: What if the interval gets smaller
and smaller, but it always includes 1/27

For example, as we encode symbols, we might
get intervals of

[0.000005, 1.000005)
[0.010105, 0.110015)
[0.011015, 0.101005)
[0.011115, 0.100105)

Although the interval is getting smaller and
smaller, we still can’t tell whether the next bit
to transmit isa O or a 1.

When a narrow interval straddles 1/2, it will
have the form

[0.01zzz, 0.10z22)

So although we don’'t know what the next it
to transmit is, we do know that the bit
transmitted after the next will be the opposite.

We can therefore expand the interval around
the middle of the range, remembering that
the next bit output should be followed by an
opposite bit.

If we need to do several such expansions,
there will be several opposite bits to output.

5b. 2

Notes for CSC 310, Radford M. Neal, 2002

Arithmetic Coding Without Blocks
(Revised Version)

1) Initialize interval [I, u) to Il =0 and u = 1.
Initialize the “opposite bit count” to ¢= 0.

2) For each source symbol, s;, in turn:

Compute r = u — 1.

i—1
Leti=1+47r > p;.
i=1

Let u =1+ rp;.
Whilel>1/2oru<1/2o0rl>1/4 and u < 3/4:
Ifl>1/2:
Transmit a 1 bit followed by ¢ 0 bits
Set cto O
Let i=2(l-1/2) and u = 2(u — 1/2).
Ifu<1/2:
Transmit a 0 bit followed by ¢ 1 bits
Set c¢to O

Let I =20 and u = 2u.
Ifi>1/4 and u < 3/4:
Setctoc+1
Let i=2(l-1/4) and u = 2(u —1/4).

3) Transmit enough final bits to specify a number in

[L, u).

What Have We Gained?

By expanding the interval in this way, we
ensure that the size of the (expanded)
interval, u — I, will always be at least 1/4.

We can now represent [and u with a fixed
amount of precision — we don’t need more
precision for longer messages.

We will use a fixed point (scaled integer)
representation for [and w.

Why not floating point?

e Fixed point arithmetic is faster on most
machines.

e Fixed point arithmetic is well defined.
Floating point arithmetic may vary slightly
from machine to machine.

The effect? Machine B might not correctly
decode a file encoded on Machine A!

5b. 3

