Notes for CSC 310, Radford M. Neal, 2002

Another Look at Code Trees

Any instantaneous code can be represented by
a tree such as the following, with subtrees for
codewords circled:

Rather than concentrate on the codewords
that head each subtree, let’'s concentrate on
the rightmost column. ..

Viewing a Code as a Way of
Dividing up a "“Codespace”

Here's the right column from the code tree,
divided up according to codeword:

001
Symbol 5, Codeword 0

010
011

Symbol s, Codeword 100
Symbol s;, Codeword 101 101

110
Symbol s;, Codeword 11
111

If we view {000,001,010,011,100,101,110,111}
as an available “codespace”, we see that this
code divides it up so that symbol s; gets 1/2

of it, symbols s> and s3 get 1/8, and symbol

s4 gets 1/4.

Can We Use Other Divisions?

We know that this code is optimal if the
fraction of codespace assigned to a symbol is
equal to the symbol’'s probability.

But suppose the symbol probabilities were
3/8,1/8,1/8,3/8. We would then like to divide
up codespace as follows:

8

Symbol s, probability 3/8

(=
=2
o

Symbol s,, probability 1/8

o
=
=y

Symbol s, probability 1/8

=
Q
=]

=
o
=

Symbol s, probability 3/8

i
g
o

-
ey
[y

Unfortunately, these divisions don’t correspond
to subtrees — so there’'s no code like this.

Viewing the Codespace as the
Interval From O to 1

Let’'s ignore this problem of how to generate
codewords for the moment.

Instead, let's ask how we could handle symbols
that have probabilities like 1/3, which aren’t
multiples of 1/8.

A solution: Consider the codespace to be the
interval of real numbers between 0 and 1.

For example:

Symbol s, probability 1/3 U6

3
Symbol s, probability 1/6

12
Symbol s;, probability 1/6

2/3

Symbol s, probability 1/3 5/6

5a. 1




Notes for CSC 310, Radford M. Neal, 2002

A Key Concept: We Can Encode
Blocks by Subdividing Further

Suppose we want to encode blocks of two
symbols from this source.

We can do this by just subdividing the interval
corresponding to the first symbol in the block,
in the same was as we subdivided the original

interval.

Here's, how we encode the block sgs1:
0

Symbol s, probability 1/3

Symbol s,, probability 1/6

Symbol s;, probability 1/6

S Interval for s,s;

Symbol s, probability 1/3 =(23,7/9)

Encoding Large Blocks as Intervals

Here's a general scheme for encoding a block

of n symbols, s;,,...,s;,:

1) Initialize the interval to [l(o), u(o)), where
(9 =0 and «(®) = 1.

2) Fork=1,...,n:
Let 109 = 10=1) 4 (=1 _ y(-0) 5T
i=1

Let u(® = (k) 4 (u(k—l) _ l(k—l)) Pi, -

3) Output a codeword that corresponds
(somehow) to the final interval, [l(”), u(”)).

This scheme is known as arithmetic coding,
since codewords are found using arithmetic
operations on the probabilities.

Finding a Codeword for an Interval

The last step requires that we be able to find
a codeword for the final interval. We'll insist
on an instantaneous code, for which no
codeword is a prefix of another codeword.

Any binary codeword defines a number in
[0,1), found by putting a “binary point” at its
left end. Eg, the codeword 101 defines the
number 1 x (1/2) +0 x (1/4) 4+ 1 x (1/8).

We'll choose a codeword such that:

e The codeword defines a point in the final
interval.

e If we added any string of bits to the end of
the codeword, it would still define a point
in the final interval.

Codewords chosen in this way will form a
prefix code for the blocks.

How Long Will the Codewords Be?

Here's a picture of how we pick a codeword

for an interval:
| u

wi2k (w+1)/2K

(w+2)/2k

Here, the interval [w/2%, (w + 1)/2F) fits
entirely within [I, u), the final interval found
when encoding the block. We can therefore
use the k-bit binary representation of w as the
codeword for this block.

This can only be true if u—I > 1/2%. Also, we
will always be able to find such a codeword of
length k if u—1>2/2% = 1/2*=1 (as above).

Conclusion: We can pick a codeword of
length k for a block of probability p (= u—1) if
k >log(1/p) + 1. So codewords need be no
longer than [log(1/p)] + 1.

5a. 2




