Notes for CSC 310, Radford M. Neal, 2002

How Long are Optimal Codewords? A Conjecture
Consider a source with 2 symbols, each with From these examples, we can make a vague
probability 1/2F. conjecture:
In the binary Huffman code for this source, all A symbol with probability 1/2’C “ought”
codewords are k bits long. to be encoded in k bits. More generally,
a symbol with probability p ought to be
Consider a source with 27 4+ 2% symbols. encoded in —log, p bits.

27 of the symbols have probabilities of 1/2/+1,

The other 2* have probabilities of 1/2k+1_ This conjecture works for the examples on the

previous slide — the Huffman codes have
In the binary Huffman code for this source, codewords of the “right” length.

symbols with probability 1/27F1 have codewords
of length j41, while symbols with probability
1/2*+1 have codewords of length k1.

In general, however, Huffman codes don'’t

have codewords of exactly the “right” length.

For one thing, logsp is usually not an integer.

Example: For j=1 and k = 2:

Probability: 1/4 1/4 1/8 1/8 1/8 1/8
Codeword: 00 01 100 101 110 111

But might we get the “right” lengths by
encoding blocks of symbols?

The Entropy of a Source Entropy of a Binary Source
To formalize this conjecture, we'll first define For a binary source, with symbol probabilities
the (binary) entropy of a source, S, having q p and 1 — p, the entropy as a function of p
symbols with probabilities p1,...,pq: looks like this:

q
H(S) = > piloga(1/p;)
i=1
We define p;log>(1/p;) to be zero if p; is zero.

The r-ary entropy, H,(S), has the same form,
but with logs to base r. The r-ary entropy is H(p)
just in different units: H»(S) = H(S)/logsr,
since log, z = logo z/logs r.

(Note: From now on, logs will be assumed to
be to base 2 if no base is specified.)

H.0 01 02 03 04 05 06 07 08 09 1.0

0 01 02 03 04 05 06 07 08 09 10

We hope the entropy will turn out to be
the average number of bits per symbol in

the most efficient encoding of the source. binary source with symbol probabilities of
0.1 and 0.9 by more than a factor of two. We

obviously can’'t do that if we encode symbols
one at a time.

H(0.1) = 0.469, so we hope to compress a

4a. 1

Notes for CSC 310, Radford M. Neal, 2002

Extensions of a Source

We formalize the notion of encoding symbols
in blocks by defining the n-th extension of a
source, S, written S".

If the source alphabet for S has ¢ symbols, the
source alphabet for 8™ will have ¢ symbols —
all possible blocks of n symbols from S.

If the probabilities for symbols in S are
P1,---,Pq, the probabilities for blocks in 8™ are
found by multiplying the p; for all the symbols
in the block. (This is appropriate when
symbols are independent.)

Entropy of an Extension

We now prove that H(S") = nH(S):

1
- piplog [——
Diy " Din

n 1
- Z"'Zpil"'PinZ'°9(>
. P CL=1 pia

n q q 1
= % 3 meeon (L)
a=1 i;=1 i,=1 Pig
n q 1
= ¥ % % menlos ()
a=1 ig=1 3 fork#a
= > > pi,log (-)
Pia

H(S™) =

a=1 ig=1
X Z Piy Pig_1Pigyq " Pin
iy, for k#a
n q 1
- Z Z pialog (-) - ’I'LH(S)
a=1 ig=1 DPiq

Another way of looking at it: The expectation
of a sum is the sum of expectations.

We Can’t Compress to Less
Than the Entropy

We will prove that any uniquely decodable
binary code for a source § must have average
length of at least H(S).

Any uniquely decodable r-ary code will have
average length at least H,(S) = H(S)/logs .

Applying this to the n-th extension, we see
that the average length, L,, will be at least
H(S™) = nH(S), and hence L,/n > H(S).
So we can’'t compress below the entropy by
encoding symbols in blocks.

Shannon’s Noiseless Coding Theorem:

However, by using extensions of the source, we
can compress arbitrarily close to the entropy!

Formally:

For any desired average length per symbol, R,
that is greater than the r-ary entropy, H,(S),
there is a value of n for which a uniquely
decodable r-ary code for S™ exists that has
average length less than nR.

4a. 2

