Notes for CSC 310, Radford M. Neal, 2002

What are the Ingredients of a
Theory of Data Compression?

e A context for the problem.

Eg, what are we trying to compress, and
what are we compressing it into?

e A notion of what data compression
schemes are possible.

A data compression scheme must allow us
to encode data, and then decode it,
recovering the original data.

e A measure of how good a data
compression scheme is.

We will have to look at how good a
scheme is on average, given some model
for the source.

One Danger: If we don’t formalize things
well, we might eliminate data compression
schemes that would have been practical.

What Do We Hope to Get From a
Theory of Data Compression?

e Easier ways of telling whether a data
compression scheme is possible, and if so,
how good it is.

e A theorem that tells us how good a
scheme can possibly be — the “theoretical
limit"” .

e Some help in finding a scheme that

approaches this theoretical limit.

e Insight into the nature of the problem,
which may help for other problems.

One insight: Compression is limited by the
entropy of the source, which is a measure of
information content that has many other uses.

Formalizing the Source of Data

We'll assume that we are trying to compress
data from a digital source that produces a
sequence of symbols, X, X5, X3,

These source symbols come from a finite
source alphabet, S = {s1,...,sq}.

Examples:
S={A,B,...,Z,_}
s§=1{0,1,2,...,255}
s={C,G,T, A}
5 ={0, 1}
The source alphabet is known to the receiver

— who may be us at a later time, for storage
applications.

Formalizing What We Compress To

The output of the compression program is a
sequence of code symbols from a finite code
alphabet, T = {tq1,...,tr}.

These symbols are sent through the channel,
to the receiver. We assume for now that the
channel is noise-free — the symbol received is
always the symbol that was sent.

We'll almost always assume that T'= {0, 1},
since computer files and digital transmissions
are usually binary, but the theory applies to
any finite 7.

2a.1

Notes for CSC 310, Radford M. Neal, 2002

Possible Compression Programs

A compression program (ie, a code) defines a
mapping of each source symbol to a finite
sequence of code symbols (a codeword).

For example:

S={C,G, T A}, T=4{0,1}

cC - 0

G — 10

T — 110
A — 1110

We encode a sequence of source symbols by
concatenating the codewords obtained by this
mapping. For example:

CCAT — 001110110

We require that the mapping be such that we
can decode this sequence.

Later, we’ll see that the above formalization
isn't really right...

What Codes are Decodable?

We intend to consider only codes that can be
decoded. But what do we mean by that?

This may depend on how the channel behaves
at the end of a transmission. Four possibilities:

e The end of the transmission is explicitly
marked, say by “$":
011101101%
e After the end of the transmission,

subsequent symbols all have a single
known value, say “0":

0111011010000000000. ..

e After the end of the transmission,
subsequent symbols are random garbage:

0111011011100100101...

e There is no end to the transmission.

When Do We Need the Decoding?

Another possible issue is when we require that
a decoded symbol be known. Possibilities:

e AS soon as the codeword for the symbol
has been received.

If this is possible, the code is
instantaneously decodable.

e With no more than a fixed delay after the

codeword for the symbol has been received.

If this is possible, the code is decodable
with bounded delay.

e Not until the entire message has been
received.

Assuming that the end of transmission is
explicitly marked, we then require only
that the code be uniquely decodable.

How Much Difference Does it Make?

We could develop theories of data compression
with various definitions of decodability.

Question: How much difference will it make?

Will we find that we can’'t compress data as
much if we insist on using a code that is
instantaneously decodable?

Or will we find that a single theory is “robust”
— not sensitive to the exact details of the
channel and decoding requirements.

Easiest: Assume the end of transmission is
explicitly marked; don’'t require any symbols be
decoded until the entire message is received.

Hardest: Require instantaneous decoding.
(It then won't matter whether the end of
transmission is marked, as far as decoding the
symbols that were actually sent is concerned.)

2a. 2

Notes for CSC 310, Radford M. Neal, 2002

Notation for Sequences & Codes
S and T are the source and code alphabets.

S* and T* denote sequences of zero or more
symbols from the source or code alphabets.

St and T denote sequences of one or more
symbols from the source or code alphabets.

A code (ie, a compression program), C, is a
mapping S — TT.

We can extend this to a mapping C : S* — T*
using concatenation:

C(5:,)C(855) - - C(s5,)

C(si;5i5 - Sip)

We sometimes also use C to denote the set of
codewords: {w; | w; = C(s;) for some s; € S}.

Formalizing Uniquely Decodable and
Instantaneous Codes

We can now define a code to be uniquely
decodable if the mapping C : S* — T* is
one-to-one — ie, if each t € T* corresponds to
at most one s € §*.

A code is obviously not uniquely decodable if
two symbols have the same codeword — ie, if
C(s;) = C(s;) for some i # j — so we'll usually
assume that this isn't the case.

We define a code to be instantaneously
decodable if any source sequences s and s’ in
St for which s is not a prefix of s’ have
encodings t = C(s) and t' = C(s') for which t
is not a prefix of #. (Since otherwise, after
receiving t, we wouldn’t yet know whether the
message starts with s or with s'.)

Examples

Examples with S = {z, y, z} and T = {0, 1}:

Code A | Code B | Code C | Code D
T 10 0 0 0
y 11 10 01 01
z 111 110 011 11
Code A: Not uniquely decodable

Both yyy and zz encode as 111111

Code B: Instantaneously decodable

End of each codeword marked by O
Code C: Decodable with one-symbol delay

End of codeword marked by following 0O
Code D: Uniquely decodable, but with

unbounded delay:
011111111111111 decodes as xzzzzzzzz
01111111111111 decodes as yzzzzzz

How to Check Whether a Code is
Uniquely Decodable

The Sardinas-Patterson Theorem tells us how
to check whether a code is uniquely decodable.

Let C be the set of codewords.

Define Co = C.

For n > 0O, define

Cn = {weTt |uw=vwhereuecC, veEC,_1
oru€Cpy_1, veC}

Finally, define

Coo = C1 UCruC3 U -

The code C is uniquely decodable if and only if
C and Cs are disjoint.

2a. 3

Notes for CSC 310, Radford M. Neal, 2002

Applying This Check to the Examples
Code A: C = Cq {10, 11, 111}
C1 {1}
c, = {0, 1, 11}
= 11€CnNCx

Code B: ¢ = ¢y = {0, 10, 110}
Cir = 0
= Coo = 0
Code C: ¢ = Cy = {0, 01, 011}
c; = {1, 11}
Co = 0

= Cxo = {1, 11},
disjoint from C

Code D: C = (o {0, 01, 11}
¢1 = {1}
Cx = {1}

= Coo = {1},
disjoint from C

How to Check Whether a Code is
Instantaneously Decodable

A code is instantaneous if and only if no
codeword is a prefix of some other codeword.

Proof:

(=) If codeword C(s;) is a prefix of codeword
C(sj), then the encoding of the sequence

s = s; is obviously a prefix of the encoding of
the sequence s’ = s;.

(<) If the code is not instantaneous, let

t = C(s) be an encoding that is a prefix of
another encoding t = C(s’), but with s not a
prefix of s/, and let s be as short as possible.

The first symbols of s and s’ can't be the
same, since if they were, we could drop these
symbols and get a shorter instance. So these
two symbols must be different, but one of
their codewords must be a prefix of the other.

2a. 4

