Notes for CSC 310, Radford M. Neal, 2002

Good Codes and Minimum Distance

Recall that for a code to be guaranteed to
correct up to ¢ errors, it's minimum distance
must be at least 2t + 1.

What's the minimum distance for the random
codes used to prove the noisy coding theorem?

A random n-bit code is very likely to have
minimum distance d < n/2 — if we pick two
codewords randomly, about half their bits will
differ. So these codes are likely not guaranteed
to correct patterns of n/4 or more errors.

A BSC with error probability @ will produce
about nQ errors. So for Q > 1/4, we expect to
get more errors than the code is guaranteed to
correct. Yet we know these codes are good!

Conclusion: A code may be able to correct
almost all patterns of t errors even if it can't
correct all such patterns.

What a Good Linear Code Looks Like

Minimum distance isn’t the whole story, but
nevertheless, it's not good for a linear code to
have very low-weight code words (and hence
very small minimum distance).

A consequence: The generator matrix for a
good code should not be sparse — each row
should have many 1s, so that encoding a
message with only one 1 produces a codeword
that has many 1s.

The decoder’'s perspective: To be confident
of decoding correctly, getting even one bit
wrong should produce a large change in the
codeword, which will be noticeable (unless
we’'re very unlucky).

Low Density Parity Check Codes

We should avoid sparse generator matrices.
But can we use a sparse parity-check matrix?

Doing so isn't quite optimal, but such “Low
Density Parity Check” (LDPC) codes can be
very good.

The big advantage of LDPC codes: There
is a computationally feasible way of decoding
them that is good, though not optimal.

We can construct LDPC codes randomly, in
various ways. One way: to make an [n, k]
code, randomly generate columns of H with
exactly three 1s in them.

For best results, equalize the number of 1s in
each row (as much as possible) by randomly
picking the position of the three 1s in the next
column from among rows that don't already
have 3n/(n—k) 1s in them.

Example: A [50,25] LDPC Code

Here's the parity-check matrix for a small LDPC
code (three 1s in each column, six in each row).

00110000010100000000000000100000000000000000001000
00000000000000000000101000000100001001000000010000
00101010000000000001000100000100000000000000000000
00000101000000001000000000000000000000110010000000
00000000010000000001000000000001100000000001000010
00000100000010000000001000000000000100000000001010
00000000000101000100000000000000010010000010000000
01000010000100000010000000000000001000000000000001
00000000000000011010000000001000000010000100000000
01000000000010000000000011001000000000001000000000
00000000001010100000000000000000000000011000010000
00000000000000000010000000010000100000000000001101
00010000000000010000000110010000000001000000000000
10000001000000010000100000000101000000000000000000
00010010001000000000000000100000010100000000000000
00000001000001000000010000000000100000000011000000
10000000010000100000000000001000000000000000000101
00000000000000000100010001000010000010000001000000
00101000100000000100000000000000010000100000000000
10000000001000000000000000010000001001000000000100
00000000100000000000001100000010000000110000000000
00000100000000001001100000100000000000000100000000
00000000100001100000000001000000000100000000100000
01000000000000000000010010000000000000001100100000
00001000000000000000000000000011000000000000110010

13a. 1

Notes for CSC 310, Radford M. Neal, 2002

A Generator Matrix for the Example

A systematic generator matrix obtained from the

parity-check matrix (with columns re-ordered):

10000000000000000000000000110000011111011101001010
01000000000000000000000001001010101001101110111000
00100000000000000000000000111001100110000100111000
00010000000000000000000000000101101011111110010010
00001000000000000000000001010011000110001000100001
00000100000000000000000000111000001111010001011011
00000010000000000000000001111010111111010001011011
00000001000000000000000001011011011011100010011011
00000000100000000000000000100101000110011001000100
00000000010000000000000001001011001111010000110000
00000000001000000000000001000010101001100110100011
00000000000100000000000000010000100000000000001101
00000000000010000000000000000011000000000000110010
00000000000001000000000001010010100000100110100111
00000000000000100000000000001001100110101110000011
00000000000000010000000000111101100100011101001001
00000000000000001000000001000001001101010101010000
00000000000000000100000001010010100110001001100011
00000000000000000010000000111011100000000110001011
00000000000000000001000000110001001100110011001100
00000000000000000000100001110010000010101000101000
00000000000000000000010000000011001111010100010000
00000000000000000000001000111110100010110110000000
00000000000000000000000100110010000011101011111100
00000000000000000000000011001110100000101110101000

Decoding LDPC Codes

To encode a message with an LDPC, we just
multiply it by the generator matrix. But how
do we decode?

The optimal method (assuming a BSC, and
equally-probable messages) is to pick the
codeword nearest to what was received. But
this is computationally infeasible.

The reason LDPC codes are interesting is that
the sparseness of their parity-check matrices
allows for an approximate (good, but not
optimal) decoding method that works by
propagating probabilities through a graph.

Graphical Representation of a Code

We can represent a code by a graph:
e Empty circles represent bits of a codeword.
e Black circles represent received data bits.
e Black squares represent parity checks.

Here's a fragment of such a graph:

Notice that each codeword bit connects to

three parity checks — corresponding to the
three 1s in each column of H. Each parity

check connects to six codeword bits.

Our task: Fill in the empty circles.

Decoding by Propagating Probabilities

We can’t be absolutely sure of the codeword
bits, but we can keep track of the odds in
favour of 1 over O (the ratio of the probability
of 1 over the probability of 0).

Each black node will send each codeword bit it
connects to a message giving its idea of what
the odds for 1 over 0 should be for that bit.

All the messages a codeword receives are
multiplied to give the current idea of what the
odds are for that bit — used to guess the
codeword once these odds have stabilized.

But first, we iterate: Each codeword bit sends
each parity check it connects to a message
with its current odds, which the parity check
node uses to update its messages to other
codeword bits. Messages propagate until the
odds have stabilized.

13a. 2

Notes for CSC 310, Radford M. Neal, 2002

Details of the Messages Avoiding Double-Counting Information
Received data bit to codeword bit: Odds Messages send between codeword bits and
sent are (1-Q)/Q if the received data is 1, parity checks exclude information obtained
Q/(1—Q) if the received data is 0. from the node the message is being sent to.

This avoids undesirable “double-counting” of

Parity check to codeword bit: Message is . .
information when a message comes back from

the probability of the parity check being

s - . that node.
satisfied if that bit is 1, divided by the
probability if that bit is 0. These probabilities But: This works perfectly only if the graph is
are calculated based on that parity check's a tree. If there are cycles in the graph,
idea of the odds for the other bits in the information can return to its source indirectly.

parity check being 1 versus 0. L . . .
This is why probability propagation is only an

Codeword bit to a parity check: Message is approximate decoding method. It works well
the odds of the bit being 1 versus O, based on up to a point, but doesn’'t have as low an
the received data, and on the messages from error rate as nearest-neighbor (maximum
the other parity checks the codeword bit is likelihood) decoding would achieve.
involved in.

Demonstration of LDPC Codes History of LDPC and Related Codes
I tried rate 1/2 LDPC codes with three bits in e Gallager, LDPC codes — 1961.

each column of H, with varying codeword
lengths, tested using a BSC with varying error
probability, @ (and hence capacity, C).

True merits not realized? Computers too
slow? Largely ignored and forgotten.

Here are the block error rates for three such ¢ Berrou, et al, TURBO codes — 1993.

codes, estimated from 1000 simulated messages: Surprisingly good codes, practically

Q C [100750] [1000,500] [10000’50001 decodable, but not really understood.
0.02.0.86 0.000 0.000 0.000 ¢ MacKay and Neal — 1995.
0.03 0.81 0.012 0.000 0.000
0.04 0.76 0.059 0.000 0.000 Reinvent LDPC codes, slightly improved.
0.05 0.71 0.108 0.000 0.000 Show they’re almost as good as TURBO
0.06 0.67 0.213 0.005 0.000 codes. Decoding algorithm related to
0.07 0.63 0.327 0.104 0.000 th babilistic inf thod
0.08 0.60 0.482 0.404 0.125 other probabilistic inference methods.
Tests were done with software available from my ¢ Many (Richardson, Frey, etc.) — ongoing.

web page, http://www.cs.utoronto.ca/~radford/ Further improvements in LDPC codes,

relationship to TURBO codes, theory of
why it all works.

13a. 3

