Notes for CSC 310, Radford M. Neal, 2002

Statement of Shannon’s Noisy Coding
Theorem for the BSC

Consider a BSC with probability of correct
transmission of P > 1/2, and hence probability
of error of Q =1— P < 1/2. This channel has
capacity C = 1— H(P) = 1-— H(Q).

For any desired closeness to capacity, € > 0,
and for any desired limit on error probability,
6 > 0, there is a code of some length n that
has rate, R, of at least C — ¢, and for which
the probability of error using nearest-neighbor
decoding, Pp, is less than 4.

I'll now sketch a proof of this, roughly
following the sketch given by Jones & Jones
in Section 5.4. Details are in Appendix C of
Jones & Jones.

Strategy for Proving the Theorem

Rather than showing how to construct a
specific code for any values of @Q, ¢, and §, we
will consider choosing a code of an appropriate
length, n, and rate, R = logx(M)/n, at random,
from among all subsets of FJ' of size M.

We consider the following scenario:

1. We randomly pick a code, C, which we
give to both the sender and the receiver.

2. The sender randomly picks a codeword
u € C, and transmits it through the channel.

3. The channel randomly generates an error
pattern, e, and delivers v—=u + e to the
receiver.

4. The receiver decodes v to a codeword, u*,
that is nearest to v in Hamming distance.

If the probability that this process leads to
u* # u is less than 4, then there must be some
specific code for which Pg < 4.

How to Choose n and M

Given @, ¢, and §, we need to choose the
length of the codewords, n, and the number of
codewords, M. How do we do this so that the
proof will work?

1. We choose a value n > 0 so that Q+n < 1/2
and 1 — H(Q+n) > C —¢/3. Our aim is to
almost always correct up to a fraction Q+n
of errors — slightly more than the average.

2. We choose n to be big enough that the
Law of Large Numbers guarantees that
the probability of getting more than
n(Q+n) errors is less than §/2.

3. We also make sure n > —(3/¢) 1095(d/2).

4. We choose the number of codewords, M,
so that the rate, R = log>(M)/n, satisfies
C—e < R < C—(2/3)e. If necessary, we
make n even bigger than needed above so
that this is possible.

Rearranging the Order of Choices

It will be convenient to rearrange the order in
which random choices are made, as follows:

1. We randomly pick one codeword, u, which
is the one the sender transmits.

2. The channel randomly generates an error
pattern, e, that is added to u to give the
received data, v. Let the number of
transmission errors, d(u,v), be e.

3. We now randomly pick the other M—1
codewords. If the Hamming distance from
v of all these codewords is greater than e,
nearest-neighbor decoding will make the
correct choice.

We chose 71 so the probability that e > n(Q+n)
is less than §/2. We need to show that if

e < n(Q+n), the probability is less than §/2
that any of the M —1 codewords chosen in
step (3) has distance from v of e or less.
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Probability of A Codeword Being
Close to the Received Vector

Consider the probability that a randomly
chosen codeword, u’, will have Hamming
distance from v of no more than n(Q+n),
when the Hamming distance from v to u is
also no more than this.

This probability satisfies

Pridu,v) <n(Q+m) < = > |
=0

1 n(@4m)] (n)
Here, 2™ is the number of possible codewords.
The sum counts the number of these at
Hamming distances from 0 up to the largest
integer no bigger than n(Q+n). From each of
these, we should subtract one, because we're
considering a codeword other than the one
actually transmitted. That decreases the
probability, so we write < rather than =.

Bounding this Probability
Exercise 5.7 in Jones & Jones shows that
An
5 (n) < onH()
h 1 -
2=0

where H is the binary entropy function,
H()\) = —Xlogs(A) — (1=X)logo(1—X).

We can use this to bound the probability of
another codeword besides u being too near v:

Pr(d(u’,v) < n(Q+n)) < Q%QnH(Qﬂ)

Now We Consider All M —1
Other Codewords

The probability that any of the M—1
codewords other than u, the one actually
transmitted, will be as near to v as u is no
more than M —1 times the probability that a
single codeword other than u will be that near.

So the probability of any other codeword
being too near v is bounded as follows

Pr(some u’ # u is too near v)
L onH(Q+n)
< (M—1)272

<« M onH(@Q+n)
2n
R

— 2" onH(Q+n)

on
— on(R-(1-H(@+n)))

Here, we use the fact that R =log,(M)/n to
replace M by 2",

Finishing the Proof

Now, recall that we chose 5 so that
1—H(Q+n) > C—¢/3

So our upper bound on the probability of a
codeword other than the right one being too
near v can be changed as follows:

Pr(some u’ # u is too near v)
< on(R=(1-H(Q+mn)))

We also chose R so that R < C — (2/3)e,
which implies that R — (C —¢/3) < —¢/3.
Recalling that n > —(3/¢) l0g2(8/2), we get:

Pr(some u’ # u is too near v) < 27"¢/3

< 2l092(5/2)
= §/2
We've bounded the probabilities of the two

ways an error can occur by §/2, so the overall
error probability must be less than §.
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