Notes for CSC 310, Radford M. Neal, 2002

How Good Are Simple Codes?

Shannon’s noisy coding theorem says we can
get the probability of error, Pg, arbitrarily
close to zero when transmitting at any rate,
R, below the capacity, C — if we use good
codes of large enough length, n.

For repetition codes, as n increases, Pp — O,
but R — O as well.

For Hamming codes, as n = 2¢ — 1 increases,
R — 1, but P — 1 as well, since there's bound
to be more than one error in a really big block.

How Good are Products of Codes?

Let C be an [n, k] code with minimum distance
d (guaranteed to correct ¢t = |[(d—1)/2] errors).

How good is the code obtained by taking the
product of C with itself p times?

Length: ny = nP

Rate: Ry, = kP/nP = (k/n)P = 0

Distance: dp = dP

Relative distance: pp = dp/np = (d/n)P — 0

The code can correct up to about dp/2 errors,
corresponding to a proportion of errors of pp/2.

For a BSC with error probability @, we expect
that for large n, the proportion of erroneous
bits in a block will be very close to Q. (This is
the “Law of Large Numbers”.)

So for large n, these product codes are unlikely
to correct all errors, and also have a low rate!

Good Codes Aren'’t Easy to Find

In the 54 years since Shannon’'s noisy coding
theorem, many schemes for creating codes
have been found, but most of them don't
allow one to reach the performance promised
by theorem.

They can still be useful. For example, error
correction in computer memory necessarily
works on fairly small blocks (eg, 64 bits).
Performance on bigger blocks is irrelevant.

But in other applications — computer
networks, communication with spacecraft,
digital television — we could use quite big
blocks if it would help with error correction.

How can we do this in practice?

Getting to Capacity for the BEC

We can get near-error-free transmission for
the binary erasure channel, at any rate below
capacity, using a practical method.

We use a linear [n, k] code, defined by a set of
¢ = n—k parity-check equations:

bl,l'Ul+b1,21)2+"’+b]_,n“n = 0
bo1vy+baova+ -+ bopvn =

bc,lvl +bC’2U2+~~~+bc7n'vn =0

For the BEC, any bit, v;, received as 0 or 1 is
guaranteed to be correct. To decode, we fill in
these known values in the equations above,
and then try to solve for the unknown values,
where the bit was received as an erasure.
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When Will This BEC Decoding
Method Succeed?

If the probability of an erasure is Q, and n is
large, there will very likely be around n@Q
erasures in the received data (the Law of
Large Numbers again).

So the decoder will be solving ¢ equations in U
unknowns, where U is very likely to be near nQ

These equations will be consistent, since the
correct decoding is certainly a solution.

The correct decoding will be the unique
solution — which the decoder is guaranteed
to find — as long as U out of the ¢ equations
are independent.

Picking the Code at Random

Suppose we pick a code — specified by the
parity-check coefficients, b;; — at random.

How likely is it that the equations that we
need to solve to decode a transmission that
has U erasures will have a unique solution?

Imagine randomly picking the parity-check
equations after we receive the transmission
with U erasures. How many equations would
we expect to have to pick to get U
independent equations?

Once we have i independent equations, the
probability that the next equation picked will
be dependent on these will be

221
27U - 2U—i
since there are 2! ways of combining the

previous equations, and oU possible equations.

Picking the Code at Random
(Continued)

The expected number of dependent equations
picked before we get U independent ones is

SU—1 T SU—1 SU—i _ 1
i:O2 ! 25 1202 -1

Reordering the terms, we can see that this is
small:

1413417+ <14+1/241/44--- < 2

Hence, we likely need ¢ to be only slightly
larger than U, which is likely to be no more
than slightly larger than nQ.

So with a random code, we will be likely to
correct all erasures when n is large as long as
Q <c¢/n=(n—k)/n=1— R. In other words, as
long as R < 1—-@Q. As we saw in tutorial, the
capacity of the BEC is equal to 1-Q, so we've
achieved the promise of Shannon’s theorem.

What about the BSC?

A similar argument using randomly-chosen
codes is used in the proof of Shannon’s noisy
coding theorem for the BSC. We'll look at a
sketch of this proof.

But unlike the random codes for the BEC,
the random codes used in this proof are
completely impractical.

We'll then look briefly at random codes of a
different kind, whose parity-check matrices are
mostly zeros. These “Low Density Parity
Check Codes” can be used in practice, and
allow near-error-free transmission at close to
capacity.

12a.2




