Notes for CSC 310, Radford M. Neal, 2002

Hamming Codes

We have seen that a binary [n, k] code will
correct any single error if all the columns in its
parity-check matrix are non-zero and distinct.

One way to achieve this: Make the n — k&
bits in successive columns be the binary
representations of the integers 1, 2, 3, etc.

This is one way to get a parity-check matrix
for the [7,4] Hamming code:

0001111
0110011
1010101

When n is a power of two minus one, the
columns of H contain binary representations
of all non-zero integers up to on=k _ 1. These
are the binary Hamming codes.

Hamming Codes are Perfect

For each positive integer ¢, there is a binary
Hamming code of length n =2¢—1 and
dimension k£ = n — ¢. These codes all have
minimum distance 3, and hence can correct
any single error.

They are also perfect, since
2"/(1+4n) = 2271/(142¢-1) = 227 17¢ = ok
which is the number of codewords.

One consequence: A Hamming code can
correct any single error, but if there is more
than one error, it will not be able to give any
indication of a problem — instead, it will
“correct” the wrong bit, making things worse.

The extended Hamming codes add one more
check bit (ie, they have one more row of all 1s
to the parity-check matrix). This allows them
to detect when two errors have occurred.

Encoding Hamming Codes

By rearranging columns, we can put the
parity-check matrix for a Hamming code in
systematic form. For the [7,4] code, we get

0111100
H = 1011010
1101001
Recall that a systematic parity check matrix of

the form [-PT|I,_,] goes with a systematic
generator matrix of the form [| P]. We get

OO O
[eNeN T Ne}
O~ OO
= O O O
=~ RO
== O
R OR KR

We encode a message block, a, of four bits,
by computing u = aG. The first four bits of u
are the same as a; the remaining three bits are
“check bits”. Note: The order of bits may

vary depending on how the code is constructed.

Decoding Hamming Codes

Consider the non-systematic parity-check matrix:
0001111
0110011
1010101

Suppose u is sent, but v=u+ e is received.
The receiver can compute the syndrome for v:
s = viHT = (u+e)H” = uHT+eHT = eHT
Note that uHT = 0 since u is a codeword.

If there were no errors, e =0, so s = 0.

If there is one error, in position i, then eHT
will be the ith column of H — which contains
the binary representation of the number 3!

So to decode, we compute the syndrome, and
if it is non-zero, we flip the bit it identifies.

If we rearranged H to systematic form, we
modify this procedure in corresponding fashion.

11b.1

Notes for CSC 310, Radford M. Neal, 2002

Syndrome Decoding

For any linear code with parity-check matrix
H, we can find the nearest-neighbor decoding
of a received block, v, using the syndrome,
s=vHT.

We write the received data asv=u-+ e,
where u is the transmitted codeword, and e is
the error pattern, so that s = eHT.

A nearest-neighbor decoding can be found by
finding an error pattern, e, that produces the
observed syndrome, and which has the
smallest possible weight. Then we decode v
as v —e.

Building a Syndrome Decoding Table

We can build a table indexed by the syndrome
that gives the error pattern of minimum
weight for each syndrome.

We initialize all entries in the table to be empty.

We then consider the non-zero error patterns,
e, in some order of non-decreasing weight.
For each e, we compute the syndrome,

s =eHT, and store e in the entry indexed by
S, provided this entry is currently empty. We
stop when the table has no empty entries.

Problem: The size of the table is exponential
in the number of check bits — it has 27"k — 1
entries for an [n, k] code.

Example: The [5,2] Code

Recall the [5,2] code with this parity-check
matrix:

11000
00110
10101

Here is a syndrome decoding table for this
code:

S e

001 00001
010 00010
011 00100
100 01000
101 10000
110 10100
111 01100

The last two entries are not unique.

Product Codes

A product code is formed from two other
codes Cq, of length ny, and Cy, of length ns.
The product code has length nins.

We can visualize the niny, symbols of the
product code as a 2D array with nq1 columns
and no rows.

Definition of a product code: An array is a
codeword of the product code if and only if

e all its rows are codewords of Cq
e all its columns are codewords of Co

We will assume here that C; and C» are linear
codes, in which case the product code is also
linear. (Why?)

11b. 2

Notes for CSC 310, Radford M. Neal, 2002

Dimensionality of Product Codes

Suppose Cy is an [ny, k1] code and C5 is an
[no, ko] code. Then their product will be an
[n]_ng, k]_kg] code.

Suppose C; and C»s are in systematic form.
Here's a picture a codeword of the product

code:
kq n-ky
K, Bits of the message Check bits computed
being encoded from the rows
.-k Check bits computed Check bits computed
272 from the columns from the check bits

The dimensionality of the product code is not
more than kqks, since the message bits in the
upper-left determine the check bits. We'll see
that the dimensionality equals k1k> by showing

how to find correct check bits for any message.

Encoding Product Codes

Here's a procedure for encoding messages
with a product code:

1. Put k1k> message bits into the upper-left
ko by kq corner of the no by nq array.

2. Compute the check bits for each of the
first ko rows, according to C;.

3. Compute the check bits for each of the n;
columns, according to Cs.

After this, all the columns will be codewords
of Co, since they were given the right check
bits in step (3). The first k> rows will be
codewords of Cq, since they were given the
right check bits in step (2). But are the last
no — ko rows codewords of C17?

Yes! Check bits are linear combinations of
message bits. So the last n, — k> rows are
linear combinations of earlier rows. Since these
rows are in Cq, their combinations are too.

Minimum Distance of Product Codes

If C; has minimum distance d; and C5 has
minimum distance do, then the minimum
distance of their product is d;ds.

Proof:

Let u; be a codeword of C; of weight d; and
us be a codeword of C, of weight d». Build a
codeword of the product code by putting uq in
row ¢ of the array if u, has a 1 in position s.
Put zeros elsewhere. This codeword has
weight dqds.

Furthermore, any non-zero codeword must
have at least this weight. It must have at least
d> rows that aren’t all zero, and each such row
must have at least d; ones in it.

Decoding Product Codes

Products of even small codes (eg, [7,4]
Hamming codes) have lots of check bits, so
decoding by building a syndrome table may be
infeasible.

But if C1 and C» can easily be decoded, we
can decode the product code by first decoding
the rows (replacing them with the decoding),
then decoding the columns.

This will usually not be a nearest-neighbor
decoder (and hence will be sub-optimal,
assuming a BSC and equally-likely messages).

One advantage of product codes: They can
correct some burst errors — errors that come
together, rather than independently.

11b. 3

