Solving Equations (Finding Zeros)

We will look at ways of solving equations

using computers — either symbolically or
numerically.

There are many kinds of equations:

e Equations in one real variable, with one or
several solutions.

e Sets of equations in several real variables.

e Equations with variables that are integers,
or are complex.

e Differential equations, others...

We will look at equations in one real variable.
We can always rewrite such an equation as

fl@) = 0

SO we can also see our problem as that of
finding the zeros of a function.



Why Solve Equations?

Solving equations is often necessary, in both
practical and theoretical applications. Here are
some direct uses:

e Consider a robot arm with two joints, with
joint angles 6 and ¢, which we can control.
The end-point of the arm will be at

r = acos(f) + bcos(6 + ¢)
y = asin(8) +bsin(0 + ¢)

To position the arm at some desired (x,vy),
we must solve these equations for 8 and o¢.

e Suppose you have a model of how world
population and food production will
change in the future. You could determine
when in the future food production will
first fall below the amount required by the
population by solving an equation.



Minimization & Maximization

Problems of minimizing or maximizing a
smooth function can be solved by finding the
zeros of its derivative.

To find the z that maximizes f(x), we find the
solutions to f/(z) = 0, then pick the solutions
where f”(z) < 0. These are local maxima.

Maximization and minimization problems arise
iIn many applications:

e A firm with a model of its customers,
competitors, and production costs can try
to find the price for its product that will
maximize its profits.

e Statisticians find “maximum likelihood”
estimates for unknown quantities by
finding the value that maximizes a
measure of fit to the observed data.



Solving Equations Symbolically

We can sometimes solve equations
symbolically by hand, or by using Maple:

> solve(x~2+x-1=0,%);
1/2 1/2
- 1/2 + 1/2 5 , - 1/2 - 1/2 5

> solve(sin(x+1)=1,x);
1/2 Pi - 1

> solve ({x+2*xy=1,y+1=x"2},{x,y});
{x=1, y =0}, {y = 5/4, x = -3/2}

But it doesn’'t always work:

> solve(x~3+sin(1+x)=0,x);

nothing printed

The null response indicates that Maple
couldn't find any solutions, but a solution
does exist!



Solving Equations Numerically

When symbolic solution fails, we can use a
method that gives an approximate numerical
answer. Maple does this with fsolve:

> fsolve(x~3+sin(1+x)=0,x);

-.6800575892

Here, numerical solution is used to find a
maximum:

> y:=—x"4+10%x"2+20%*x;
4 2
y :=-x + 10x + 20 x
> fsolve(diff(y,x)=0,x);
2.627365085

> subs(x=",diff(y,x$2));

-62.83656748

Since the second derivative is negative, the
point where the derivative is zero is a
maximum, rather than a minimum.



Methods for Numerical Solution

There are many ways of trying to find
numerical solutions. We will look at:

e Bisection — A simple and robust method,
but not all that fast.

e Newton-Raphson Iteration — A much
faster method, when it works.

e [ he Secant Method — More robust than
Newton-Raphson, but not quite as fast.

None of these methods is perfect. It is very
hard to guarantee that a numerical method
will always find all solutions.



Finding Zeros by Bisection

Suppose that we know f(x) is continuous, and
we have found values a and b such that

f(a) <0 and f(b) > 0. Then we can be sure
that f has a zero somewhere between a and b.

We can find such a zero by bisecting the
interval [a, b], until we are close enough:

a b

This is a very robust procedure — nothing
much can go wrong.

However, we'll find only one zero this way!
There could be more. It's also not very fast.



A Bisection Algorithm in Maple

bisection := proc(f,x,rng,tolerance)
local 1x, hx, mx, 1f, hf, mf;

1x := evalf(op(1l,rng));
hx := evalf(op(2,rng));

1f := evalf(eval(subs(x=1x,f)));
hf := evalf(eval(subs(x=hx,f)));

if 1f=0 then RETURN(1x) fi;
if hf=0 then RETURN(hx) fi;

do # loop until we find zero, or interval is smaller than tolerance
mx := (1x+hx) / 2;

if abs(mx-1x)<tolerance or abs(mx-hx)<tolerance then
RETURN (mx) ;
fi;

mf := evalf(eval(subs(x=mx,f)));

if mf=0 then
RETURN (mx) ;
fi;

if mf>0 and 1f>0 or mf<0 and 1f<0 then
1x := mx;
else
hx := mx;
fi;
od;
end;



Finding Zeros by Using a
Model of the Function

How can we do better than bisection? One
approach:

1. Build a “model” of the function, based on
points where we have values.

2. Compute a zero of the model function,
and take that as a guess for a zero of the
real function.

3. Compute the value of the real function at
this point, and go back to step (1).

Building a model is much like approximation by
Taylor polynomials, and also like interolation.



Using a First-Degree Model:
Newton-Raphson Iteration

We can build a first-degree model of a
function using the function’s value and
derivative at one point.

Repeating this procedure, always building a
model based on the last point, gives the
method of Newton-Raphson iteration.

We get the next guess, x;41, from the
previous guess, z;, as follows:

rir1 = z; — f(z) [/ [(=;)



Newton-Raphson Iteration in Maple

newton := proc(f,x,start,tolerance,maxi)
local df, z, zf, zd, oz, 1i;
if tolerance<=0 then
ERROR (‘Fourth operand must be a positive tolerance value‘);
fi;
if not type(maxi,integer) or maxi<=0 then
ERROR(‘Fifth operand must be the maximum number of iterations‘);
fi;
df := diff(f,x);
z := evalf(start);
for i from 1 to maxi do

0z := Z;

zf := evalf(subs(x=z,f));
zd := evalf(subs(x=z,df));

z := z - zf/zd;
if abs(z-oz)<tolerance then
RETURN(z) ;
fi;
od;

ERROR(‘Zero not found after maximum number of iterations®);

end;



When Does Newton Iteration Work?

Newton-Raphson iteration requires that the
function be differentiable (and that we can
compute the derivatives).

Unfortunately, Newton-Raphson iteration is
not guaranteed to converge even if the
derivatives do exist. For example:

%

If we start close enough, however, it does
converge for this example.

We might also have problems if the derivative
IS zero at the solution.



The Secant Method

What if we don’'t know how to compute
derivatives, and so can’'t use Newton-Raphson
iteration?

The Secant Method builds a first-degree
model of the function using the last two
function values.

Given starting values xg and x1, the secant
method proceeds iteratively as follows:

T; — Tj—1

f(x;) — f(zi—1)

This is not as fast as Newton-Raphson
iteration, but it's faster than bisection.

rir1 = x; — f(x;)

This method can also fail to converge,
however, just like Newton-Raphson iteration.



The Secant-Bracket Method

Suppose that we have starting points that
bracket a zero, as we assumed for the
bisection algorithm. Can we do better than
bisection while still guaranteeing convergence?

The Secant-Bracket Method builds a
first-degree model based on the two
bracketing points:

Unfortunately, it's not as fast as the secant
method.



Other Methods

A huge number of other methods are possible,
using higher-degree models of the function
based on various pieces of information. For
example:

e \We could build a second-degree model
based on the last three function values
(Muller's method).

e \We could build a second-degree model
based on the function value, the first
derivative, and the second derivative at
the last point.

e \We could build a third-degree model based
on the function values and derivatives at
the last two points.



How to Choose a Method

In choosing what method to use, we need to
look at three things:

1. The information needed to use the
method. Just function values, or also
derivatives? Is one starting point needed,
or two (perhaps bracketing a zero)?

2. How robust the method is. Ie, does it
sometimes fail to find a zero that exists?

3. How fast the method is at finding a zero.

Hybrid methods are often used to try to get
the advantages of several methods.



The Convergence Rate of Bisection

How accurate is the result of using bisection
for n iterations?

Suppose we start with an interval of size I
that contains a zero. If we did no iterations,
just guessed the mid-point of this interval,
our error would be no more than

I
6025

Each iteration cuts the size of the interval in

half, so

1
Citl = 5 &

After the n iterations, guessing the mid-point
would give an error of no more than



Convergence Rates in Terms of
Number of Digits of Accuracy

We can translate a bound on the error after n
iterations to the number of digits of accuracy
after n iterations.

We just take logs (to base 10): An error of
no more than ¢, means the result is accurate
to about —logig(en) digits after the decimal
point. (Accuracy in terms of total digits will
depend on the magnitude of the answer.)

Eg: If the error is no more than 0.0001, the
result will be accurate to —10919(0.0001) =4
digits after the decimal point.

For bisection:

—logio(en) = —lo0g10(1/2) + nlogi0(2)

The number of digits of accuracy goes up
linearly with n.



Convergence Rate of Newton Iteration

Suppose after z iterations the Newton-Raphson
method has found a point, x;, that is fairly
close to the true zero, z«. Let ¢, = |x; — z«| be
the error. What will the error be after one
more iteration?

We can use Taylor's theorem to conclude that

Flzs) = f(z;) + f'(x;) (we—x;) + I (c)

2
5 (Tx—x;)
for some ¢ between x, and x;.

Since f(x«) = 0, this can be rearranged into

[wi . f(:vz-)] BN (O
f'(z;)

The left side is equal to z;4 1 — z«. From this,

we get

" (e)
2f"(z;)
If f has a continuous second derivative, the

constant above will not vary much once z; is
close to z«. The error decreases quadratically.

3

€41




T he Benefits Obtained from
“Super-Linear” Convergence

For bisection: €41 = Cg
For Newton iteration: €41 = 067;2
For some other methods: €41 = Ce

with p between 1 and 2.

How many digits accuracy after n iterations?
If ;41 = Cé€, then

[—10910(€;4+1)] = —10910(C) + p[—10g10(€;)]
which we can write as D;41 = K + pD;.

For p = 1, the number of digits of accuracy
grows linearly.

For p = 2, the number of digits of accuracy
approximately doubles each iteration (for large ).

For any p > 1, the number of iterations to get
D digits of accuracy is proportional to log(D),
when D is large.



