T he Interpolation Problem

Problem: We know the value of a function,
x(t), at points tg,t1,...,tn. FOr some new
point, ¢, what is the value of z(¢)?

Examples:

e \\We have measured the elevation at points
along a certain highway. We need to know
the elevation at some intermediate points.

e A computer program that takes a long
time to run has calculated the switching
speeds of transistors of various sizes. We
want to know the switching speed for
other, intermediate, sizes.

We will assume that ¢ is a real number, but
situations where t is a vector of real numbers
also arise in practice.

We will often look at several functions — eg,
x(t), y(t), z(t), defining a parametric curve.

Interpolation is Not Well Defined

Unfortunately, interpolation is not a
well-defined problem. Many possible functions
will pass through the known points.

For example:

X(t)

t

Things are even worse when we |look beyond
the range of the known points — when we try
to extrapolate, rather than interpolate.

So What Should We Do~

We can’'t solve the interpolation problem
unless we are willing to provide some more
information about the function.

Usually, people assume that the true function
IS likely to be smooth, in some sense.

A statistical approach: Assume some
probability distribution over functions, then
pick the most likely function that matches the
known values.

A more common appraoch: Assume the
function is one from a restricted class, of
which only one matches the known values.

Usually, we don’t really believe the true
function is from this class, but we hope that
won't matter too much.

Polynomial Interpolation

If we know the value of a function atn+4+1
distinct points, we can interpolate by finding
the polynomial of degree n or less that passes
through these points.

There is exactly one such polynomial, so this
problem is well defined.

Is this solution reasonable? Two contrasting
facts:

e Any continuous function can be
approximated to any accuracy (over a
finite range) by a polynomial of some
degree.

e T he polynomial of degree n or less that
interpolates n 4+ 1 values of a function may
be much different from one that
approximates the function well.

The Lagrange Interpolation Formula

Suppose that we do want to do polynomial
interpolation. We need to figure out the
polynomial of degree n (or less) that passes
through the points

(t07x0)7 (tlaxl)a ceey (tn,l'n)

We could solve a system of linear equations:

an t8 + a,1 t8_1 +--- 4+ ag = =z0
ant]? + an1 t711—1 +--- 4+ apg = 71
anty, + ap_ tg_l +--- 4+ ag = zn

But it may be easier to use the Lagrange
interpolation formula:

n n t—tj
x(t) = Z x; H —
J7

Does the Lagrange Formula Work?

Here's the Lagrange interpolation formula again:

x(t) = Z x; H Y
JFu

Note first that this is a polynomial in t of
degree n or less. Remember, the z; and t; are
constants!

But does it pass through the given points?

For n = 4, consider the value at t = t3. The
terms with ¢+ = 0, 1, 2, 4 will be zero, since
they include a factor of (t3 —t3) = 0. The
term with ¢+ = 3 will be

t3 —tg tz3 —1t1 t3—1o tz3 — 14
3 43—t ta —t1 tz —to tz — 14

x = x3

The value at ¢t = t3 will be x3, which is right!

vV V V V

V V V V V

An Example in Maple

ti:=[_33_2’_1so’132];
xi:=[12,10,5,1,3,4];

interp(ti,xi,t);
13 5 4 3 2 19
- ——t -1/2t +3/8t +7/2t - -——t +
120 15
with(plots):
pts:=plot([seq([til[i],xi[i]],i=1..6)],style=point):
inter:=plot(interp(ti,xi,t),t=-3..3):
display([pts,inter]);
101
- -2 -1 3
0
_10
- 20

ti:=[ti[],3];

xi:=[xil[],6];
pts2:=plot([seq([ti[i],xi[i]],i=1..7)],style=point):
inter2:=plot(interp(ti,xi,t),t=-3..3):
display([pts2,inter2]);

Behaviour of Polynomial Interpolation

Polynomial interpolation has some properties
that may often be undesirable:

e Adding or changing a data point can have
effect on the whole interpolant — even far
from the new point.

e Small changes in data points can have big
effects on the interpolant.

e [rying to extrapolate with a polynomial
can give very bad results.

Some of these problems can be fixed by using
piecewise polynomial interpolation.

Piecewise Polynomial Interpolation
A degree-9 polynomial interpolating 10 points:
67

3]

2;

2 4 6 8 10

This isn't ideal. We can instead use several
polynomials. Below is the piecewise cubic
natural spline interpolant for the data above:
67

51

L TN

2;

2 4 6 8 10

The points at which we switch from one
polynomial to another are called knots. There
IS @ knot at every data point above.

L inear Interpolation

The simplest interpolation scheme is piecewise
linear interpolation — we just joint the data

points by line segments:
51
4

4
3.5
2.5

>

2 4 6 8 10

This method has two problems:
e It's probably not very accurate.

e [he interpolant has sharp corners.

One the other hand, it has some advantages:

e Changing a data point changes only the
two adjacent line segments.

e [he interpolant never wanders far from
the data points.

Piecewise LLagrange Interpolation

We might try to get a more accurate
piecewise interpolant by using Lagrange
interpolation with more than two points.

Here is a piecewise cubic interpolant, fit to
groups of four points at a time:

4

2
4
3.5
2.5
5

2 4 6 8 10

Here, there are knots at the 4th and 7th data
points.

We see a problem: The pieces don't always
join up smoothly.

Making the Pieces Join Smoothly

To get pieces that join smoothly, we can stick
with cubic polynomials, but fit each of them
to just two data points. Each piece then has
freedom to join smoothly with its neighbors.

How much freedom?

Each cubic polynomial has four parameters.
Two are taken up by the requirement that it
interpolate its two data points. That leaves
two parameters for each piece that we can use
to make the whole interpolant smooth.

We'll look at two such schemes for piecewise
cubic interpolation: The natural cubic splines
and the Catmull-Rom interpolant.

The Natural Cubic Splines

Suppose we interpolate n+1 data points using
n cubic polynomials. Here's one way to use
the 4n parameters available:

e Require each piece to interpolate its data
points. That gives 2n constraints.

e Require adjacent pieces to have matching
first derivatives. That's another n—1
constraints.

e Require adjacent pieces to have matching
second derivatives as well, for another n—1
constraints.

e [hat leaves two more free parameters. We
can require the second derivatives at the
ends to be zero.

This scheme gives the natural cubic splines.

How Can We Find a Natural Spline?

How can we find the natural cubic spline that
interpolates the data (tg,xg), (t1,z1), (t2,25)7

The spline will consist of two pieces, say:
a3t + axt® + ait +ag (to <t < tp)
bat> + bot? + byt + by (t1 <t <tp)

We can find the a's and b's by solving the
following system of 8 linear equations:

a3t8 + G,Qt% + aitp + ap = x¢
azt; + axt? + a1ty + a9 = 21
b3t? + bot{ + b1ty + by = z1
b3ts + bot3 + bito + by =

3a3tf + 2ant; + a1 = 3b3tf + 2bot; + b
6azt1 + 2ao, = 6b3t;7 + 2bo

6aztg + 2a, = O
6czty + 2¢co = O

Properties of Natural Cubic Splines

e Finding the natural spline for a set of data
points is possible in a reasonable amount
of time, but it is a bit inconvenient.

e All the data points influence all the pieces
of a natural spline, though nearby data
points have more effect.

e [he natural spline corresponds to the most
probable function that passes through the
data, according to a fairly reasonable
probability distribution over functions.

The Catmull-Rom Interpolant

We may prefer a piecewise cubic interpolant
that is easier to compute than a natural
spline. We may also want changes to a data
point to change only the nearby pieces.

The Catmull-Rom interpolant has both these
properties. In this scheme is specified by

e Requiring the ends of each piece to match
the data points.

e Requiring the slope at the ends of each
piece to match the slope determined by
the two adjacent data points.

An example:

5
5
4
3.5
5

Polynomial Interpolation is Linear
Suppose that the polynomial
p(t) = ant™ + ap_1t" "1 + -+ ag
interpolates the data points
(to, o), (t1,21), ..., (tn,Zn)
and that the polynomial
q(t) = bnt™ + byt 4+ 4 bg
interpolates the data points
(to,90), (t1,91), ---, (Tn,yn)

Then it is easy to see that the polynomial
p(t) + C_I(t) — (an + bn)tn + -+ (CLO + bO)
interpolates the data points

(t07x0+y0)9 (t1,£131+y]_), <oy (tn,fcn+yn)

Similarly, ¢cp(t) interpolates (tg,cxg),. .., (tn,cxn).
Polynomial interpolation is a linear operation.

Note: This use of the word “linear” is different from
“linear interpolation” as interpolation by line segments.

L inearity of Piecewise Interpolation

Piecewise polynomial interpolation will also be
linear, provided that it is based on linear
functions of the data points and interpolants.

For example:

e Piecewise Lagrange interpolation is linear,
since each piece is just a polynomial
interpolant.

e Natural cubic splines are linear, since the
derivatives they are based on are linear, ie:

d d d
(@) + 9(@) = - f(@) + - g(a)

Hence, if derivatives match for two splines,
they will match for their sum.

e [he Catmull-Rom interpolant is linear,
since it is based on the data points and on
the slopes defined by pairs of points, which
are linear with respect to the function values.

Basis Functions for Linear Interpolants

If we are using a linear scheme, we can build
an interpolating function from basis functions
that interpolate just one non-zero point.

For a set of locations tg, t1, ..., tn, We can
find the following basis functions:

po(t) interpolates (tg,1), (t1,0), ..., (tn,0).
p1(t) interpolates (tg,0), (t1,1), ..., (tn,0).
pn(t) interpolates (¢g,0), (¢1,0), ..., (tn,1).

Now, to interpolate the data points

(twaO)) (t17$1)7 ct e (tn,ﬁljn)

we just compute

p(t) = zopo(t) + z1p1(t) + -+ + znpa(t)

L_.agrange Interpolation Basis Functions

Here are the basis functions for Lagrange
interpolation at tg =0, t1 =1, to = 3, t3 = 4.
1.2+

1 ,3,2,2 19
— L 34+22-12441

COo00o

p W R

1
o
NB DD NG N RO ®

=

3—L4240¢

coo0o
o
o~

1
©

©o o

1
©
NERXO N Ng /MBS OD 0N
[
N
~+
w
N

=

COo00o

N

