Differential Equations

Differential computation of functions is an
example of solving a differential equation. In
this case, we do this because it is faster than
direct computation from the formula.

We often want to go the other way — we
start with the differential equation, and want
to find the formula that solves it, or at least
be able to compute the numerical solution.

Some phenomena that can be modelled using
differential equations:

e Changes in the populations of predators
and prey over time.

e Changes in the economy, that result in
changes in employment, investment, etc.

e Most of physics: eg, the orbit of a satellite
under the influence of gravity.

A Simple Example:
Exponential Growth of a Population

Growth of organisms in an environment with
plenty of resources can be described by the
following differential equation:

dx(t)

dt

Here, t is time, and z(¢) is the population at
time t. The constant a represents how rapidly
the population grows.

= ax(t)

This differential equation can be solved
symbolically. Maple knows how, at least if we
plug in a specific number for a (here a = 3):

> dsolve({ x(0) = 5, diff(x(t),t) = 3*xx(t) }, { x(&) });

x(t) = 5 exp(3 t)
Here, x(0) = 5 specifies the initial population.

How believable is this solution as a model of
growth in real populations?

A More Complex Example:
Modeling an Orbit Around a Planet

People have been trying to build mathematical
models for the motions of the planets and
Moons since ancient times.

Johannes Kepler found a good descriptive
model for planetary motion. Isaac Newton
explained how this model could be derived
from his laws of motion and law of gravity.

We'll look at using Newton's laws to model
the motion of an object orbiting a planet. We
assume that we know:

e [he mass of the planet.
e T he initial position of the object.
e [he initial velocity of the object.

We want our model to tell us the path of the
object for some future period of time.

The Mathematical Model

In our model, the velocity of the object
determines how its position changes with
time. In Cartesian coordinates:

dpz _ Ay _
dt T at Y

Here, t is the time, pr and py are the position
coordinates, and vy and vy give the velocity.

Change in velocity depends on acceleration:

dvgy dvy
e
Finally, the acceleration comes from the
gravitational force of the planet (assumed to
be at the origin). By using F = ma and
F = GMm/d?, where d = ,/pz + p5, and
remembering that the force is toward the
planet, we get

GM(pe/d) _ GM(py/d)
d2 Ay = d2

Ar —

Simplifications in the Model

Is this a good model? A bit of thought shows
that it’'s not a perfect model of how a real
object orbits the Earth (say).

It ignores all the other objects in the
universe. They all have some gravitational
(or other) effect.

It assumes that the planet is stationary —
not a good assumption if the orbiting
object is as massive as the planet itself.

It assumes that Newton’'s law of gravity is
correct. Einstein showed that it's only an
approximation.

It assumes that the object is rigid. Objects
that can deform will absorb a small
amount of energy as they orbit.

Is it good enough? That depends...

Solving the Model Numerically

This system of differential equatons was solved
symbolically by Isaac Newton over 300 years
ago, but it's too difficult for Maple to do.

If it's also too difficult for us, we might try to
solve it numerically for a particular case.

We have to provide specific numbers for the
initial position and velocity of the object, as
well as the mass of the planet.

We don’t get a formula in the end — just a
list of numbers giving the x and y coordinates
of the object at various times in the future.
These numbers will be approximations to the
true answer.

This seems much inferior to a symbolic
solution. The big plus is that we can almost
always try to find a numeric solution (though
sometimes our attempt may not work well).

A Numerical Solution in Maple

numerical_orbit := proc (GM, start_xpos, start_ypos,
start_xvel, start_yvel,
step, n_steps)

local xpos, ypos, xvel, yvel, xaccel, yaccel,
distance, t, 1i;

xpos := array(0..n_steps);
ypos := array(0..n_steps);
xvel := array(0..n_steps);

yvel := array(0..n_steps);

xpos[0] := evalf(start_xpos);
ypos[0] := evalf(start_ypos);
xvel[0] := evalf(start_xvel);
yvel[0] := evalf(start_yvel);

for t from 1 to n_steps do

distance := sqrt(xpos[t-1]1~"2 + ypos[t-1]-2);

xaccel := - xpos[t-1] * GM / distance”3;
yaccel : ypos[t—-1] * GM / distance”3;

xvel[t] := xvel[t-1] + step*xaccel;
yvel[t] := yvel[t-1] + step*yaccel;

+

step*xvel[t-1];
step*yvel[t-1];

xpos[t] := xpos[t-1]
ypos[t] := ypos[t-1]

+

od;

&

[[xpos[il, ypos[i] 1 $ i=0..n_steps]

end:

Disappointing Results

If we have this procedure in the file orbit.mp
we can try it out as follows:

> read ‘orbit.mp°¢;
> nla := numerical_orbit(1,1,0,0,0.5,0.001,3000):
> plot(nla,scaling=constrained) ;

The result looks like this:

o
w

prding

0O 0.2 0.4 0.6 0.8 1.2

o7

Not very good! Try again with a smaller step:

> nib:=numerical_orbit(1,1,0,0,0.5,0.0005,6000):
> plot(nlb,scaling=constrained);

o O

o

0o 0.2 0.4 0.6 0.8 1 1.2

What'’s the Problem?

We have found that the numerical solution we
get is very inaccurate.

In this type of problem, inaccuracy could be
due to any of:

1. An inadequate mathematical model.

2. An inaccurate approximation to the model
— here in terms of little time steps.

3. The approximate representation of
numbers in the computer.

In this case, (2) seems most likely.

We could overcome this problem by using a
very small time step — but this might take a
very long time.

Instead, we might try to think of a better way
of doing the approximation.

A Better Numerical Solution

numerical_orbit_2 := proc (GM, start_xpos, start_ypos,
start_xvel, start_yvel,
step, n_steps)

local xpos, ypos, xvel, yvel, xaccel, yaccel,
distance, t, i;

xpos := array(0..n_steps);
ypos := array(0..n_steps);
xvel := array(0..n_steps);

yvel := array(0..n_steps);

xpos[0] := evalf(start_xpos);
ypos[0] := evalf(start_ypos);
xvel[0] := evalf(start_xvel);
yvel[0] := evalf(start_yvel);

for t from 1 to n_steps do

distance := sqrt(xpos[t-1]1"2 + ypos[t-1]"2);

xaccel := - xpos[t-1] * GM / distance”3;
yaccel : ypos[t—-1] * GM / distance”3;

xvel[t] := xvel[t-1] + step*xaccel;
yvel[t] := yvel[t-1] + step*yaccel;

xpos[t] := xpos[t-1] + step*xvel[t];
ypos[t] := ypos[t-1] + step*yvell[t];
od;
[[xpos[il, ypos[i] 1 $ i=0..n_steps]

end:

Better Results

Results are much better now:

> n2a := numerical_orbit(1,1,0,0,0.5,0.001,3000):
> plot(n2a,scaling=constrained);

SNo ©
P

Encouraged, we can try taking bigger steps:

> n2b:=numerical_orbit_2(1,1,0,0,0.5,0.03,100):
> plot(n2b,scaling=constrained);

L.ooking Farther Into the Future

What happens if we try to compute the orbit
for farther into the future?

> n2bb:=numerical_orbit_2(1,1,0,0,0.5,0.03,1000):
> plot(n2bb,scaling=constrained);

0.4
0.4 0 0.2 004006 N0\ 8
(. | | | | |
e)
9l
, 857/
' e
T
" w7
t[/
7
7
-0. 8¢ -
This isn't quite right — in the true answer

(assuming the model is correct), the object
retraces the same ellipse exactly.

On the other hand, it's not too bad. The
object doesn’t spiral into the planet, or
wander off to distant space.

