Pixel-Based Graphical Displays

Most computer graphical displays consist of a
rectangular grid (eg, 600 x 900) of square pixels.

Each pixel displays a single colour. Displays
come in several varieties:

Black-and-white: Each pixel has only two
possible values — black or white.

Gray-scale: Each pixel can be a shade of gray
(eg, 256 shades from black to white).

Colour-mapped: Each pixel can be a colour
from some limited set (eg, out of 256
possible).

Full-colour: Each pixel can be any of a wide
range of colours (eg, specified using 8 bits
for red, green, and blue).



Rendering Curves as Pixels

When we display a curve on a pixel-based
device, we need to colour a set of pixels that
will approximate the curve.

For example:

This rendering assumes that pixels can take on
only two colours. One can do better by using
intermediate shades, if the device can display
them, but we won't talk about how to do that.



Two Renderings of a Line Segment

One that sets every pixel that the line crosses:

Is one of these better than the other?



General Strategies for Rendering
Parametric Curves

Suppose we have a parametric representation
of a curve, as (x(t),y(t)), for t over some
range. How can we render it?

First strategy: For a sufficiently large
number of values for ¢t over its range

Evaluate z(t) and y(t).
Round these values to the nearest pixel.
Set the pixel to the desired colour

Second strategy: For values of ¢t over some
range, determine the slope of the curve, and
step one pixel along the axis that matches this
most closely, setting a single pixel to the
desired colour.



Rendering A Line Segment (1)

Following Fiume’'s book (section 1.5), we look
at how to construct an efficient program for
rendering a line segment.

We follow the second strategy, and assume
that curve starts at (0,0) and has slope
between 0 and 1. We can transform other
cases to this one.

We also assume that the end-points are
integers. Could this cause problems?

proc DrawLine (x, y : int; c : colour)
var yt, m : real
var yi : int

m:=y / x
for xi : 0..x
yt (= m *x xi

yi := floor (yt + 1/2)
PutPixel (xi, yi, c)
end for
end DrawLine

This brute-force method is not very efficient.



Differential Computation of Curves

Suppose we need to evaluate z(t) and y(t) for
many values of t: t =1tg, to+ 9, tog+ 20, ...

Rather than evaluating x(t) separately for
each t, we can evaluate x(tg) = zg, and then
compute

dx
Tiy1 = x(tjg1) = $i+5a(tz’)

This will be faster if dx/dt is easier to evaluate
that z(t) itself. For a line segment, dz/dt is a
constant.

On the other hand, we might wonder about
accumulated round-off error, and error from
dx/dt varying as t varies over the interval J.



Rendering A Line Segment (2)

We can transform program #1 to use
differential computation. This replaces a
multiplication by an addition, which is faster.

proc DrawLine (x, y : int; c : colour)
var yt, m : real
var yi : int
yt := 0
m:=y / x
for xi : 0..x
yi := floor (yt + 1/2)
PutPixel (xi, yi, c)
yt += m
end for
end DrawLine

Does this program do exactly the same thing
as program #17



Rendering A Line Segment (3)

We can eliminate the addition of 1/2 each
time around the loop as follows:

proc DrawLine (x, y : int; ¢ : colour)
var ys, m : real
var yi : int

ys

m :

:= 1/2
=y/x

for xi : 0..x

yi := floor(ys)
PutPixel (xi, yi, c¢)
ys +=m

end for
end DrawLine



Rendering A Line Segment (4)

Next, we split ys into two variables, ysi and
ysf, giving the integer and fractional parts.
The integer part directly specifies the y
coordinate of the pixel to set:

proc DrawLine (x, y : int; c : colour)
var ysf, m, mm : real
var ysi : int

m:=y/ x
mm :=m - 1
ysi := 0

ysf := 1/2

for xi : 0..x
PutPixel (xi, ysi, c)
if (ysf+m>=1) then
ysi += 1
ysf += mm
else
ysf += m
end if
end for
end DrawLine



Rendering A Line Segment (5)

Now we get rid of the floating-point quantities
ysf, m, and mm, replacing them by a sort of
fixed-point representation scaled by 2*x:

proc DrawLine (x, y : int; c : colour)
var Ysf, M, MM : int
var ysi : int

M := 2xy
MM := M - 2%x
ysi := 0
Ysf := x

for xi : 0..x
PutPixel (xi, ysi, c)
if (Ysf+M>=2%*x) then
ysi +=1
Ysf += MM
else
Ysf += M
end if
end for
end DrawLine

Does the change from floating-point to
fixed-point representations change what the
program does?



Rendering A Line Segment (6)

Finally, we define
r = Ysf + M - 2%xx = 2%y + 2% (ysf-1)*x

This lets us replace the test for Ysf + M >= 2x%x
by a test for r >= 0.

We thus obtain Bresenham’s Algorithm:

proc DrawLine (x, y : int; c¢ : colour)
var r, M, MM : int
var ysi : int

M := 2xy
MM := M - 2*x
ysi = 0

r := 2%y - X
for xi : 0..x
PutPixel (xi, ysi, c)
if (r>=0) then
ysi +=1
r += MM
else
r += M
end if
end for
end DrawLine



Rendering a Circle

We can render a circle using the first strategy
mention before, using differential evaluation.

A circle of radius r centred at the origin can
be represented parametrically as follows:

x(u) = r cos(u), y(u) = r sin(u)

The corresponding differential form is:

Z—z(u) = —rsin(u), Z—z(u) = r cos(u)

This may seem just as costly to use as the
orginal, until you notice that it’'s equivalent to

dx . dy .
Zw = —yw, L = o)

Our strategy: Start with 2(0) = r, y(0) = 0,
and proceed from there by small steps in u,
setting pixels as we go. We choose our step
size to be small enough to not leave gaps.



First Implementation

To implement this, we need to settle some
details.

After setting z(0) = r and y(0) = 0, we can

iterate the following, for some step size §:
r(u+9d) = z(u) —y(u)d
y(u+6) = y(u)+z(u)d

We choose the step size, §, to 1/r. The total
distance travelled each step should then be
equal to 1, so we won't skip any pixels.

We need to continue for 27/ steps in order to
go all the way around.
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Second Implementation

We can stop the circle from spiralling outwards
by changing the iteration to the following:

r(u+6) = z(u) —y(u)d
y(u+90) = y(u)+z(u+46)4

Why does this work?

It stops regions of points from “expanding’,
because each step is a ‘“shear’” transformation
that doesn’'t change the area of a region:
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