Approximating Functions

We have seen how computers can represent
numbers approximately using floating-point
(and other) representations.

But how does the computer do arithmetic
operations, and compute functions such as log
and sin?

Basic arithmetic (4, —, x, /) is often done in
about the same way people do it by hand,
though more sophisticated ways are used in
the fastest machines.

Functions such as log and sin can be computed
in several ways. We will look at one way — by
using a polynomial approximation, found by
the Taylor series.



Linear approximation

A crude way to approximate a function, f(z),
IS to use a line that is tangent to the function

at z =a: f(z) = f(a) + f(a)(z — a).

Example: we can approximate sin(z) by a line
tanget at £ = 1, given by sin(1) 4+ cos(1)(x—1)

1. 4¢
1.2+

11

0.2}

0% 0.5 ; 1.5 2
This approximation works OK very near x = 1,
but not very well farther away.

An aside: Is it cheating to use the values of sin(1) and
cos(1) in the approximation?



Quadratic Approximation

We can do better than linear approximation by
going to a quadratic (second-order) function.

Here we approximate sin(z) near x = 1 by
both linear and quadratic functions:
1. 4+

1.2+

This quadratic approximation is given by
sin(1)

sin(1) 4+ cos(1)(z—1) — (z — 1)?

Why should this be the right formula?



Approximation by Taylor Polynomials

In general, we might decide to approximate
f(x) by a function that matches its derivatives
at x = a up to order n, and whose derivatives
of higher order are zero.

T his approximation is the Taylor polynomial
of degree n about z = a:

fa@) + f@(@—a) + 1D

2
La-a)? +

£ (a)

n!

+ (r —a)"”
For f(xz) = sin(x), the second degree Taylor
polynomial about x = 1 is the quadratic
approximation we saw before:

sin(1) + cos(1)(z—1) — sin(1)

(z —1)2



Taylor's Theorem

How accurate are the Taylor Polynomials as
approximations?

Taylor's Theorem tells us this. Assuming all
the needed derivatives are defined:

f(x) = f(a) + f’(a)(x—a,) 4+ ...

) (a) "
t T @t T

for some value of ¢ between a and . Note
that ¢ may depend on x.

The first terms above are the nth degree
Taylor polynomial. The last term is the
“remainder” . If we can put a limit on how big
the remainder might be, we will have put a
limit on the error in our approximation.



Does the Infinite Taylor Series
Converge to the Right Answer?

Can we always approximate f(x) well by a
Taylor polynomial about x = a of high enough
order?

In other words, does the infinite Taylor series:

f(@) = f(a) + f'(a)(z—a) + / 2(!a) (z—a)? + - -

always converge”?

No, it doesn’t always converge. Sometimes it
converges in some neighborhood of a, but not
for all z. For log(x) about z = 1, Maple tells us

> taylor(log(x) ,x=1);

(z-1) - 3(@-1)? + 3(z-1)3 - Z(a—1)*
+ £(@—1)° 4+ O((z—1)°)

This doesn’t converge for x > 2. If f(x) is
analytic, the Taylor series will converge for x
close enough to a.



Piecewise Approximations

How can we approximate f(z) if the Taylor
series doesn’'t converge for all 7

One possibility is to use a Taylor series about
different points in different regions — giving a
piecewise approximation.

We might do this even if the Taylor series
converges everywhere, because it might
converge slowly far from a.

A similar idea is to transform the problem
using properties of the function. For example:

sin(z) = sin(x + 27)
log(x) = log(ex) —1



Example: Taylor Series for Sin(x)

Let's find the Taylor series for sin(xz) about

x = 0:
sin(0) + sin’(0)z + %:ﬂ + Smg#aﬁ + -
= sin(0) 4+ cos(0)z — Sinz—(!o)xz — %ﬁo)aﬁ + -
= = — 3123 + 2% — 2’ + -
This uses sin’(z) = cos(z) and cos/(z) = —sin(z).
Does this series converge for all 7
How fast does it converge?

What would be a good strategy for using this
series to compute sin(x) for any z7



Using Taylor Series in Practice

To use Taylor series to compute functions, we
need to solve two problems:

e How can we tell when we've added enough
terms (ie, how high a degree Taylor
polynomial do we need)?

e How much effect does rounding error have
on the result? Can this round-off error be
reduced?

The solutions to these problems can be
related. We will look at three possible
approaches. There are many more
sophisticated methods that we won't look at!



Stopping for Alternating Series

Suppose the terms in the series have
alternating signs (eg, sin(z) about z = 0), and
that the terms are decreasing in size.

We can then put a limit on how much error
their may be in our answer — it can't be more
than the next term in the series.

Consider a series with t1 > to > t3 > ---
t1 — to + tz3 — t4 + t5 — tg + ---

Suppose we are interested in the error when
we use only the first term, t1. We can see
that t1 is too high by rearranging the sum:

ty + (—to + t3) + (—ta + t5) + ---

All the bracketed terms are negative, so t1 is
above the infinite sum. On the other hand, we
see that t;1 — to is too small:

t1 — to + (i3 — ta) + (ts — tg) + ---

We can use this to decide when to stop.



Stopping using Taylor's Theorem

We might instead decide to stop when the
remainder term in Taylor's Theorem says that
our error is small enough.

For the series for sin(x) about x = 0, the
remainder term is
sin(nt1)(¢) b1
(n+ 1)!
The (n + 1)st derivative of sin will be either
+sin(x) or =cos(x). We don't know ¢, other
than that it's between 0 and z, but even so,
we know the remainer will be no bigger than
N xn—l—l
(n+ 1)!
For any z, this will eventually become smaller
than our desired error bound.




Summing to Saturation

A simple approach is to keep adding in terms
of the series until adding more terms doesn’t
change the sum, due to saturation.

This is very easy to implement. But does it
work?

Consider two series:

7 1 1 1
6 - " TaTo T T
1 1 1 1
2 =144+, + -+ .+

What happens when we sum both to
saturation with Digits set to 57



Results of Summing to Saturation

Let's try it:
> Digits:=b:
> s8:=0:

> for i from 1 while evalf(s+1/i"2)>s do s :
S;

evalf(s+1/i"2): od:

\4

1.6390

\"4

evalf (Pi~2/6);
1.6450

> s8:=0:
> for i from O while evalf(s+1/27i)>s do s :
S;

evalf(s+1/2"i): od:

\4

2.0000
Why the difference?

What would happen if we added up the terms
in the opposite order? Why might that be
difficult?



Horner’s Rule

Suppose we somehow know beforehand how
many terms of a power series to use. What's
the best way to compute the sum?

The easiest way is probably to sum in order.
But it may be faster to use "“Horner’'s Rule”,
illustrated by

ag + a1x + a,2:c2 —+ a3x3

= ag+ x(al —+ 33(&2 + x(a3)))

The left side requires 5 multiplies and 3
additions.

The right side requires 3 multiplies and 3
additions

Which method will be more accurate??



