Filtering Signals and Images

One-dimensional signals (eg, audio recordings)
and two-dimensional images can be filtered in
many ways. We might use filters to

e Eliminate “static” from a radio signal.

e Remove a “hum” at some frequency from
an audio recording.

e Increase the amount of “base” in music, if
we like it that way.

e Enhance the location of "“edges’ in an
image.

e Undo the effect of blurring or other
distortions that have been introduced into
a signal or image.

We can also characterize how the signal has
been distorted in terms of a filter.



Linear Filters

We will look only at linear filters. If X and Y
are signals or images, and F' is a linear filter,
then

F(X+Y) = F(X) + F()
F(cX) = cF(X)

where ¢ is any real number.

By “adding” together signals (or images), we
mean adding together their values at each
point in time (or at each location in an
image), to give a new signal (or image).

By “multiplying” a signal or image by a
constant, we mean multiplying the value at
each time or point by that constant.



Some Kinds of Filters

One way of characterizing a linear filter is by
what it does to sinusoidal components of the
signal at various frequencies — corresponding
to different pitches in an audio signal.

A low-pass filter lets the low frequency
components through, but eliminates or
reduces components whose frequency is above
a certain cutoff.

A high-pass filter lets the high frequency
components through, but not the low
frequency components.

A band-pass filter lets through components
that have frequencies in a certain range.



Analog vs. Digital Filters

Filters that have various effects can be built
from analog components (eg, transistors).
This is the traditional way to make things like
radios and stereo systems.

If we can convert the signal or image to
numbers in a computer (ie, to digitize it), we
can instead use a program to produce the
filtered signal from the input signal.

We may then need to convert the resulting
numbers back to an analog signal (eg, if we
want to listen to it).

These conversions are done by devices called
analog-to-digital and digital-to-analog
converters.



Sampling and Quantization

When we digitize a continuously varying
signal, we inevitably introduce innaccuracies of
two types.

First, we will have to sample the signal at only
certain times. For instance, a meteorologist
might record the air temperature only every
hour, even though the temperature is
changing continually.

Second, we will have to quantize the value of
the signal. For instance, the meteorologist
might record the temperature (in degrees
Celcius) to only one decimal place, even
though the real temperature is not quantized.

We might be able to mostly ignore
quantization, if the accuracy is fairly high.

Ignoring the effects of sampling can be
disastrous, however!



The Problem of Aliasing

Here's what happens if we sample a signal that
has a sinusoidal component whose frequency
IS greater than half the sampling frequency:
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The true analog signal is a sine wave with
frequency 1.1 cycles per time period.
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We sample once per time period.

What we see |looks like a sine wave with
frequency 0.1 cycles per time period.



The Sampling Theorem

There is a theorem (discussed in Fiume’'s
book) that a signal can be reconstructed from
its sampled form as long as all its components
have frequencies less that half the sampling
frequency.

If we try to digitize a signal at a sampling
frequency that is less than twice the maximum
frequency present, we may get nonsense!

We can avoid this by putting an analog filter
before our analog-to-digital converter.

The same is true in reverse: If we reconstruct
an analog signal from a sampled signal, we
can't expect the frequencies above half the
sampling rate to be reconstructed properly.
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Impulse Response of a Linear Filter

We can describe a linear filter whose
behaviour doesn’'t change over time by its
impulse response — what the output signal is
when the input is all 0's except for a single 1.

Here's an example of an impulse response:
Input: ... 0, 1, 0, 0, 0, 0o ...
Qutput: ... 0, 0.7, 1.3, -0.7, -0.1, 0 ...

From linearity, we can deduce the output of
this filter for any other input. For example:

Input: ... 0, 1, 2, 0, 0, o ...
OQutput:
... 0, 0.7, 1.3, -0.7, -0.1, 0
+ ... 0, o, 1.4, 2.6, -1.4, -0.2



Filtering as Convolution

We can also describe the operation of a linear
filter as a convolution. Suppose the input
signal is

.., P, P_q, Py, P, Py, ...

and the filter has an impulse response of
ey, W_2, W_1, wWo, Wi, W2, ...

Then the output signal, P;, will be given by

j=—00

This is the convolution of P and w, sometimes
written as P xw. It turns out that Pxw = w *x P.

Of course, we can’'t compute P on a computer
if the impulse response extends to +oo, but we
can if the impulse response is finite (eg, if

w; = 0 for ¢t < L and for i > U).



Moving Average Filters

The n-point moving average filter has an
impulse response of length n, with values of

1/n, 1/n, ..., 1/n, 1/n
Which is wg might vary, but we don’t care here.

Here is an example of filtering with a 5-point
moving average:
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This is a low-pass filter, which might be used
to suppress noise.



Differencing Filters

We can define a filter that finds the difference
between each point and the next. It would
have impulse response of 1, —1.

Here is the result of applying it to the same
signal as before:
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This is a high-pass filter.



What a Filter Does to a Sine Wave

We saw earlier that we can represent functions
(eg, signals) as the sum of many sine waves.

We can therefore figure out what a linear filter
does to a signal by figuring out what it does
to sine waves.

If we apply the filter with impulse response
wp, w1 to the sine wave Asin(2nfx + ¢), with x
being an integer, we get the signal

’woA sin(27rfx + (]5) + wiA Sin(27rf(:v—1) —+ qb)

= A sin(2nfz + ¢5)

where A4« and ¢« depend on wqg, wi, A, f, and
¢ (but not on z).

For this and any other linear filter, the effect
on a sine wave is to convert it to another sine
wave, with the same frequency, but maybe
with different amplitude or phase.



Frequency Response of a Filter

We can describe what a filter does by saying
how it affects the amplitude and phase of sine
waves of each frequency. This is the
“frequency response’” of the filter.

A low-pass filter will reduce the amplitude of
sine waves with high frequencies.

A high-pass filter will reduce the amplitude of
sine waves with low frequencies.

Filters can also change the phase (perhaps
differently for different frequencies). This
often doesn’t matter, however. People can’t
hear such phase changes when natural audio
signals are filtered.



Filtering With Fourier Transforms

The frequency response of a filter is the basis
of another way we could apply it using a
computer:

e Convert he signal to a sum of lots of sine
waves. (This is called finding the “Fourier
transform” of the signal.)

e Change the amplitude and phase of each
of these sine waves according to the
filter's frequency response.

e Add together the modified sine waves to
get the filtered signal. (This is the
“inverse Fourier transform’ .)

This sounds like a lot of work, but because of
a clever algorithm called the Fast Fourier
Transform it can actually be faster than
applying the filter by doing the convolution in
the obvious way.



Two-Dimensional Filters

We can also apply filters to images, using a
two-dimensional analog of convolution.

For example, we could try to suppress noise by
applying a moving average filter with the
following pattern:

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

There are two-dimensional analogs of the
frequency response and of the Fast Fourier
Transform.

See page 153 of Fiume's book for examples of
applying filters to an image.



