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Alternatives to Monte Carlo Computation

Since about 1990, Markov chain Monte Carlo has been the dominant method of

computation for Bayesian models. Just before that, Monte Carlo using

importance sampling was widely used. But what are the alternatives?

Some older methods:

• Analytical solutions. Usually confined to models with conjugate priors.

• Numerical quadrature (eg, Simpson’s Rule). Applicable only to very

low-dimensional problems.

• Gaussian approximation at the mode / Laplace’s method of integration.

Once a common method, still of some interest even in high dimensions.

Some newer methods:

• Quasi-Monte Carlo. Doesn’t use random points, but rather points that look

sort of random, but are designed to be more uniform.

• Variational methods. Look for an approximation in a tractable class of

distributions.

• Methods related to “loopy belief propagation”. Apply a method that works

with acyclic graphs even when your graph has cycles.



Gaussian Approximation at the Mode

One can show that for many Bayesian models, the posterior distribution

approaches a Gaussian form as the number of data points increases.

We might therefore approximate the posterior by a Gaussian distribution with

the same mode, and the same curvature of the density at the mode.

Suppose that we wish to approximate π(θ|data) = (1/Z) exp(h(θ)), where

h(θ) = log prior + log likelihood.

We find the location of the mode, θ∗, and the Hessian matrix of second

derivatives at the mode, h′′(θ∗).

The approximating Gaussian has mean θ∗ and covariance matrix [−h′′(θ∗)]−1.

We can see this by matching to the log of a multivariate Gaussian density:

log N(θ; µ, Σ) = −(1/2) log(2π) − (1/2) log |Σ| − (1/2)(θ − µ)T Σ−1(θ − µ)

for which the Hessian is −Σ−1.



Properties of Gaussian Approximation

• We don’t need to know the normalizing constant for the posterior, and (as

we’ll see) we can get an approximation to this normalizing constant (the

marginal likelihood) from the Gaussian approximation.

• We need to be able to find the mode. This is usually easier than any Monte

Carlo scheme, assuming that the distribution has a single mode (or at least a

dominant mode).

• We need to compute second derivatives of the log posterior density at the

mode. This is hard for some models, and becomes unattractive for high

dimensional problems.

• Once we have the Gaussian approximation, we can easily find simple

moments and quantiles, and we can find the expectation of more complex

functions by simple Monte Carlo.

• The adequacy of the approximation may depend on the choice of

parameterization — eg, whether to use θ ∈ (0,∞) or instead reparameterize

in terms of φ = log(θ).



The Laplace Approximation

The Laplace method for approximating an integral is related to Gaussian

approximation, but can be a bit more elaborate.

Suppose we want to approximate a definite integral over RD such as

I =

∫

exp(h(θ)) dθ

We can do a Taylor expansion of h(θ) around the location of its maximum, θ∗:

h(θ) = h(θ∗) + (θ − θ∗)T h′(θ∗) + (1/2)(θ − θ∗)T h′′(θ∗)(θ − θ∗) + · · ·

Dropping terms past second order, and noting that h′(θ∗) = 0, we get the

approximation

I ≈

∫

exp
(

h(θ∗) + (1/2)(θ − θ∗)T h′′(θ∗)(θ − θ∗)
)

dθ

= exp(h(θ∗))

∫

exp
(

− (1/2)(θ − θ∗)T [−h′′(θ∗)](θ − θ∗)
)

dθ

= exp(h(θ∗)) (2π)D/2 |−h′′(θ∗)|−1/2



Laplace Approximation for Bayesian Inference

When h(θ) = log prior + log likelihood, the normalizing constant for the posterior

will be ∫

exp(h(θ)) dθ

which we have just seen can be approximated as

exp(h(θ∗)) (2π)D/2 |−h′′(θ∗)|−1/2

This is also the marginal likelihood for the model, if no terms were dropped from

the log likelihood.

To approximate the posterior expectation of a positive function, a(θ), we write

E[a(θ)|data] =

∫

a(θ) exp(h(θ)) dθ
∫

exp(h(θ)) dθ
=

∫

exp(g(θ)) dθ
∫

exp(h(θ)) dθ

where g(θ) = h(θ) + log(a(θ)). We have seen how to approximate the

denominator. We approximate the numerator in the same way, finding θ† that

maximizes g(θ) and then computing g′′(θ†). The result is

E[a(θ)|data] ≈
exp(g(θ†)) (2π)D/2 |−g′′(θ†)|−1/2

exp(h(θ∗)) (2π)D/2 |−h′′(θ∗)|−1/2
=

exp(g(θ†)) |−g′′(θ†)|−1/2

exp(h(θ∗)) |−h′′(θ∗)|−1/2



Variational Approximations

Another approach to approximating a posterior distribution is to define a class of

tractable distributions, Qφ(θ), and then find the value of φ that makes Qφ best

match the posterior, P (θ|x), where x is the observed data.

Suppose we choose Kullback-Liebler divergence as our measure of how well Q

matches P :

KL(Q||P ) = −

∫

Q(θ) log

(

P (θ|x)

Q(θ)

)

dθ

Then this approximation will also give us a lower bound on the marginal

likelihood, since

log P (x) =

∫

Q(θ) log(P (x)) dθ − KL(Q||P ) + KL(Q||P )

=

∫

Q(θ) log

(

P (θ, x)

Q(θ)

)

dθ + KL(Q||P )

Since KL(Q||P ) is non-negative, the first term above is a lower bound on

log P (x). It will typically be computable, when Q is tractable (eg, by simple

Monte Carlo, if there’s no better way).



Types of Variational Approximations

Note that KL(Q||P ) involves an expectation over Q, which we assume is

tractable. This is one reason variational approximations are sometimes feasible.

There are many possible choices for the class of approximating distributions.

For example:

• We might let Qφ be Gaussian, with φ = (µ, Σ). This Gaussian

approximation to P (θ|x) will not necessarily be the same as the Gaussian

approximation based on curvature at the mode.

• For multidimensional θ, we might require that Qφ(θ) =
∏

j Qφj
(θj). This

assumption alone may be enough to force all the Qφj
to be tractable (eg, in

“variational EM” for mixture models), or we might need to limit the form of

these distributions.

Sometimes further approximations are needed, but if they are also lower bounds,

we can preserve the property of lower bounding the marginal likelihood.



Properties of Variational Approximations

Variational approximation based on minimizing KL(Q||P ) will select a

distribution Q that avoids putting putting significant probability in places where

P does not. In particular, if P is multimodal, Q will fit just one mode, rather

than span multiple modes (and the low probability region between).

This is desirable for mixture models, where multiple equivalent modes exist, but

not so desirable if we want to see the true uncertainty in other posterior

distributions with multiple modes.

As the posterior distribution becomes more complex (eg, for neural network

models), it becomes harder and harder to imagine a tractable class Qφ that will

contain an adequate approximation.


