CSC 2541, Spring 2011 — Major Assignment

Due at the start of class on March 21. Worth 25% of the course mark.

This assignment is to be done by each student individually. You may discuss it in general terms with
other students, but the work you hand in should be your own. In particular, you should not leave any
discussion with someone else with any written notes (either paper or electronic).

In this assignment, you will implement a Gaussian process regression model in which some observa-
tions are “outliers”, with larger noise variance than ordinary observations.

The data consists of n observations, (21,41), ..., (Tn, Yn), where z; is the vector of predictor variables
for observation ¢, and y; is the real-valued response in this observation.

Which observations are outliers is modeled in terms of unobserved binary variables o1, ..., 0,, with
o; = 1 if observation ¢ is an outlier. The full model is as follows, with the only dependencies being those
that follow from those shown explicitly:

Yi | zi, 04, f, 00, 01~

N(f(z;), 0(2)) ifo; =0
{ N(f(x;), o8 —i—a%) ifo; =1

flyvp ~ GP(y,p)
0;|0 ~ Bernoulli(d)

0 ~ Beta(l,19)

log(y) ~ N(0,3%)
log(p) ~ N(0,3?)
log(ag) ~ N(-1,3%)
log(o1) ~ N(1,3%)

The Gaussian process G P(, p) has mean zero and covariance function

K(z,2/) = Cov(f(z),f(z) = 10* + 72exp (= p? ||z - 2/|?)

Since the function f is infinitely complex, you can’t represent it explicitly in your program. Instead,
you should integrate it away to give the multivariate Gaussian joint density of the responses conditional
on the predictors, outlier indicators, and parameters: P(y1,...,Yn|T1,--+,Tn, 01, .., 00,7V, P 00,01).
The 6 parameter can also be easily integrated away.

You should use MCMC to implement Bayesian inference for the remaining variables and parameters,
log transforming the parameters so they will be unconstrained (and probably otherwise easier to update
too). The state of the Markov chain will therefore consist of o1, ..., oy, log(7), log(p), log(cg), log(o1).
You should first try what’s probably the most obvious MCMC method, in which you update each of
these in turn, using univariate Metropolis updates. You will need to find suitable proposal distributions
for the Metropolis updates of the parameters. Initially, the proposal distribution you use for the o;
should be to propose the value opposite the current value (ie, if o; = 0, propose o; = 1; if 0; = 1,
propose o; = 0).



You should then see if you can improve the efficient of this MCMC method by changing the proposal
distribution for the o;. The proposal distribution can be non-symmetric, in which case you will need
to use Metropolis-Hastings updates, in which the ratio of proposal probabilities affects the acceptance
probability (see the last two slides of the Week 4 lecture). The general idea, which you should implement
in some suitable form, is to look at the “residuals” for the observations, given by y; — p;, where p; is the
posterior mean value for a response in another observation with the same predictor variables, x;. These
residuals will be conditional on the current values of all the o; and of the model parameters. It seems
plausible that if the absolute value of the residual is large compared to og, the outlier indicator o; is
likely to be 1, and conversely, if the residual is small, o; is likely to be 0. This suggest using a proposal
distribution for o; that with fairly high probability (but not probability one) proposes the value that is
“more likely” by some such criterion.

Note again that, as mentioned above, for non-symmetric proposal distributions, the acceptance prob-
ability has to account for the lack of symmetry, which requires computing the probability of proposing
the current state from the proposed state. Note that this backwards probability might well be found
using different residuals than the forward probability.

The computational saving with this scheme will occur when the value proposed in this way happens
to be the same as the current value. This proposal can obviously be accepted (with no effect) without
any further computation. When a value different from the current value is proposed, costly matrix
operations will be needed to decide whether to accept it. These costly operations are needed for every
update with the original scheme. On the other hand, it’s conceivable that the old scheme might move
more rapidly around the posterior distribution. So it’s not obvious which is better.

I have provided a synthetic data set with p = 5 predictors on the course web site, as a file with one
line for each observation, containing the five predictor values followed by the response value, with spaces
separating them. The file has 1100 observations. You are to take the first n = 100 of these observations
as the training set. The remaining 1000 observations can be used as a test set. This assignment does
not require assessing performance of predictions for these test cases, but you may be curious, and they
may be useful for debugging.

You should start by implementing the basic MCMC scheme described first above, adjusting the
proposal distributions for the parameters to get reasonable sampling performance. You should then
implement some version of the second scheme (you’ll have to fill in the details), and compare its sampling
efficiency with that of the first scheme. You should avoid inefficiencies of an algorithmic nature (such as
re-computing something you expensively computed before and could have saved), but there’s no need
to spend much time on detailed coding optimizations.

Sampling inefficiency can be measured by the product of average computing time per iteration (here,
an update of all the variables in turn) and the autocorrelation time of some suitable function of state
(such as one of the paramerters, or the sum of all the o0;). See the last few slides from Week 3 for a
discussion of autocorrelation time.

You should hand in your program, a discussion of how you implemented the MCMC methods, a
discussion of the results of comparing them, and any plots or other output that support your conclusions.



