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1 Introduction

1.1 Factor Graphs

A factor graph is a bipartite graph that expresses how a “global” function of many vari-
ables factors into a product of “local” functions. Suppose, e.g., that some real-valued
function g(x1, x2, T3, T4, x5) of five variables can be written as the product

(x4, 29, 23, 24, x5) = falz1) fB(22) fo (21, T2, 23) fo (23, T4) fE(23, T5) (1)

of five functions, fa, f5,..., fr. The corresponding factor graph is shown in Fig. 1(a).
There is a variable node for each variable, there is a function node for each factor, and
the variable node for xz; is connected to the function node for f if and only if x; is an
argument of f.

{17 {2} {1,2,3}{3,4} {3,5}
(a) (b)

Figure 1: A factor graph that expresses that a global function factors as the product of
local functions fa(z1)fB(x2)fc(x1, 29, 23) fo(2s, 24) fE(x3,25). (a) Variable/function view,
(b) index/subset view. Variable nodes are shown as circles; function nodes are shown as filled
squares.

We will use the following notation. Let Xs = {z; : ¢ € S} be a collection of variables
indexed by a finite set S, where S is linearly ordered by <. For each ¢ € S, the variable
x; takes on values from some set A;. Most often S will be a subset of the integers with
the usual ordering. If F is a subset of S, then we denote by Xg = {z;: 1 € E} to be the
subset of variables indexed by F.

A particular assignment of a value to each of the variables of Xg will be referred
to as a configuration of the variables. Configurations of the variables can be viewed as
being elements of the Cartesian product Ag = [[;cs Ai, called the configuration space.
For concreteness, we suppose that the components of configurations are ordered as in
S, so that if S = {i1,42,...,ix} with i3 < iy < -+ < iy, then a typical configuration
a is written as a = (a;,,as,,... ,a;,) with a;; € A;; for 7 = 1,... ,N. Of course, the
configuration a is equivalent to the multiple variable assignment z;, = a;,, z;, = a,,,

., and vice versa. By abuse of notation, if a is a particular configuration, we will
write Xg = a for this assignment. We will have occasion to view configurations both as
assignments of values to variables and as elements of Ag.



We will also have occasion to consider subconfigurations: it £ = {j1,j2,...,5m} C S,
with j; < jo <+ < jum,and ais any configuration, then the M-tuple ag = (a;,, ... ,a;,,)
is called the subconfiguration of a with respect to FE. The set {ag : a € As} of all
subconfigurations with respect to £ is denoted by Ag; clearly Ag = [[,c5 Ai. Again, by
abuse of notation, if ag is a particular subconfiguration with respect to E, we will write
Xg = ag for the multiple variable assignment z;, = a;,, z;, = a;,, etc.

Finally, if ¢’ C Ag is some set of configurations, we will denote by Cg the set of
subconfigurations of the elements of C' with respect to F, i.e., Cp = {ag : a € C}.
Clearly Cgp C Ag.

Let g: As — R be a function with the elements of Xg as arguments. For the moment,
we require the domain R of g to be equipped with a binary product (denoted ‘- ’) and a
unit element (denoted 1) satisfying, for all u, v, and w in R,
lru=w, w-v=v-u, (u-v)-w=u-(v- -w),
so that R forms a commutative semigroup with unity. The reader will lose nothing
essential in most cases by assuming that R is a field, e.g., the real numbers, under the

usual product. We will usually denote the product of elements z and y by the juxtaposition
xy, and only occasionally as x - y.

Suppose, for some collection ) of subsets of S, that the function ¢ factors as

9(Xs) =[] fs(Xn) (2)

EeQ

where, for each K € Q, fg: Ag — R is a function of the subconfigurations with respect to
E. We refer to each factor fg(Xg) in (2) as a local function. (If some E € () is empty, i.e.,
E = (), we interpret the corresponding local “function” fy with no arguments as a constant
in R.) Often, as is common practice in probability theory, we will use an abbreviated
notation in which the arguments of a function determine the function domain, so that,
e.g., f(x1,22) would denote a function from A; x Ay — R, as would f(x,21). In this
abbreviated notation, (2) would be written as g(Xs) = [[gcq f(XE).

A factor graph representation of (2) is a bipartite graph denoted F'(5, Q) with vertex
set SUQ and edgeset {{i, K} :1€ S, F € Q,1 € E}. Inwords, F/(S5,Q) contains an edge
{1, E} if and only if « € E, i.e., if and only if z; is an argument of the local function fg.
Those vertices that are elements of S are called variable nodes and those vertices that are
elements of () are called function nodes. For example, in (1), we have S = {1,2,3,4,5}
and Q@ = {{1},{2},{1,2,3},{3,4},{3,5}}, which gives the factor graph F(5,Q) shown
in Fig. 1(b). Throughout, we will translate freely between factor graphs labeled with
variables and local functions (the ‘variable/local function view’ of Fig. 1(a)) and the cor-
responding factor graph labeled with variable indices and index subsets (the ‘index/subset
view’ of Fig. 1(b)). To avoid the more precise but often quite tedious mention of functions



“corresponding to” function nodes, and variables “corresponding to” variable nodes, we
will blur the distinction between the nodes and the objects associated with them, thereby
making it legitimate to refer to, say, the arguments of a function node f, or the edges
incident on a variable z;.

It will often be useful to refer to an arbitrary edge of a factor graph. Such an edge
{v,w} by definition is incident on a function node and a variable node; the latter is called
the variable associated with the given edge, and is denoted by z(, ..

1.2 Prior Art

We will see in Section 2 that factor graphs subsume many other graphical models in
signal processing, probability theory, and coding, including Markov random fields [19, 21,
32|, Bayesian networks [20, 31] and Tanner graphs [35, 38, 39]. Our original motivation
for introducing factor graphs was to make explicit the commonalities between Bayesian
networks (also known as belief networks, causal networks, and influence diagrams) and
Tanner graphs, both of which had previously been used to explain the iterative decoding
of turbo codes and low-density parity check codes [11, 22, 25, 26, 30, 38, 39]. In that
respect, factor graphs and their applications to coding are just a slight reformulation of
the approach of Wiberg, et al. [39]. However, a main thesis of this paper is that factor
graphs may naturally be used in a wide variety of fields other than coding, including
signal processing, system theory, expert systems, and artificial neural networks.

It is plausible that many algorithms in these fields are naturally expressed in terms
of factor graphs. In this paper we will consider only one such algorithm: the sum-product
algorithm, which operates in a factor graph by passing “messages” along the edges of the
graph, following a single, simple, computational rule. (By way of preview, a very simple
example of the operation of the sum-product algorithm operating in the factor graph of
Fig. 1 is given in the next subsection.)

The main purpose of this essentially tutorial paper is to illuminate the simplicity
of the sum-product algorithm in the general factor graph setting, and then point out a
variety of applications. In parallel with the development of this paper, Aji and McEliece
[1, 2] develop the closely related “generalized distributive law,” an alternative approach
based on the properties of junction trees (and not factor graphs). Aji and McEliece also
point out the commonalities among a wide variety of algorithms, and furnish an extensive
bibliography. Forney [10] gives a nice overview of the development of many of these
algorithms, with an emphasis on applications in coding theory.

The first appearance of the sum-product algorithm in the coding theory literature is
probably Gallager’s decoding algorithm for low-density parity-check codes [14]. The op-
timum (minimum probability of symbol error) detection algorithm for codes, sometimes
referred to as the MAP (maximum a posteriori probability) algorithm or the BCJR algo-



rithm (after the authors of [4]) turns out to be a special case of the sum-product algorithm
applied to a trellis. This algorithm was developed earlier in the statistics literature [5]
and perhaps even earlier in classified work due to L. R. Welch [29]. In the signal pro-
cessing literature, and particularly in speech processing, this algorithm is widely known
as the forward-backward algorithm [33]. Pearl’s belief propagation and belief revision
algorithms, widely applied in expert systems and in artificial intelligence, turn out to be
examples of the sum-product algorithm operating in a Bayesian network; see [31, 20] for
textbook treatments. Neural network formulations of factor graphs have also been used
for unsupervised learning and density estimation; see, e.g., [11].

In coding theory, Tanner [35] generalized Gallager’s bipartite graph approach to low-
complexity codes and also developed versions of the sum-product algorithm. Tanner’s
approach was later generalized to graphs with hidden (state) variables by Wiberg, et
al. [39, 38]. In coding theory, much of the current interest in so-called “soft-output”
decoding algorithms stems from the near-capacity-achieving performance of turbo codes,
introduced by Berrou, et al. [7]. The turbo decoding algorithm was formulated in a
Bayesian network framework by McEliece, et al. [30], and Kschischang and Frey [22].

1.3 A Sum-Product Algorithm Example

As we will describe more precisely in Section 4, the sum-product algorithm can be used
(in a factor graph that forms a tree) to compute a function summary or marginal. For
example, consider the specific case in which the global function defined in (1) is real-valued
and represents the conditional joint probability mass function of a collection of discrete
random variables, given some observation y. We might be interested in, say, the marginal
function

p(z1]y) = ZZZngl,mg,J:g,x4,x5)
From the factorization given by (1), we write
plaily) = ZZZZfA (21)f5(22) fo (21, 22, 23) fp (25, 24) [s(xs, 5)
= fa(z ZfB 9 ch 1, Tg, T3 pr T3, T4 ZfE z3,75)  (3)

fp(zs,@q)lews fe(zs,@5)lzs

foe(zs,zq,x5)les

feepe(z1,w2,03,04,05) o1

where we write fpg(xs, T4, x5) for the product fp(xs, x4) fe(xs, x5), and feepr(r1, v2, T3, T4, T5)
for the product fu(zs) fo(r1, @2, 5) o (a5, 04 fu (22, 70).
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In (3) we have identified the various factors that need to be computed to obtain
p(x1|ly). We have used a notation for a summary operator that will be introduced in
Section 3. In this example, for ¢ € E, the notation f(Xg) | x;, called the summary of
f(XEg) for z;, is defined as the marginal function

JXp) bai= S f(Xp)

z;:j€E\{i}

obtained by summing over all possible subconfigurations of the arguments of f, other
than z;. In this notation, p(z1|y) = ¢(Xs) | z1.

Our primary observation is that g(Xs) | 1 can be computed knowing just f4(z1) and
feepr(x1) 4 ®1. The latter factor can be computed knowing just fg(zs), fo(x1,zq,23)
and fpr(rs,za,25) | xs3. In turn, fpg(xs, x4, x5) | 23 can be computed knowing just

fD($37 554) i x3 and fE(l’g, :54) i 4.

These products can be “gathered” in a distributed manner in the factor graph for g,
as shown in Fig. 2. Imagine a processor associated with each node of the factor graph,
capable of performing local computations (i.e., computing local function products and
local function summaries), and imagine also that these processors are capable of com-
municating with adjacent processors by sending “messages” along the edges of the factor
graph. The messages are descriptions of summaries of various local function products.
By passing messages as shown in Fig. 2, all of the factors necessary for the computation
of g(Xs) | x1 become available at x;.

fA(il?1)

fB(fL’2)
Figure 2: Computing g(x1,...,25) | 21 by the sum-product algorithm.

As we will make clear later, each processor needs only to follow a single, simple,
computational rule: the message passed from node v to node w on the edge {v,w} is
the product of the messages that arrive on all other edges incident on v with the local
function at v (if any), summarized for the variable z, .} associated with the given edge.
The reader may verify that precisely this rule was followed in generating the messages



passed in the factor graph of Fig. 2. In a tree, the algorithm terminates by computing at
a variable node (z1, in this case) the product of all incoming messages.

As an exercise, the reader may wish to verify that the various factors needed to
compute each marginal function can be obtained as products of the messages sent by the
sum-product algorithm, as is shown in Fig. 18 of Section 4. From this conceptually simple
computational procedure operating in the corresponding factor graph, we will be able to
derive the wide variety of algorithms mentioned in the Abstract.

1.4 Notational Preliminaries

We will need the following terminology and ideas from graph theory. Let G(V, F) be a
graph with vertex set V' and edge set E. Edges are not directed; an edge between two
vertices v and w is the unordered pair e = {v,w}, and e is said to be incident on v and
w. The degree d(v) of a vertex v is the number of edges incident on v. For every v, the
set n(v) of neighbors of v is n(v) = {w : {v,w} € E}, the set of vertices that share an
edge with v. Clearly v has d(v) distinct neighbors. If f is a function node in a factor
graph, then X, ;) is the set of arguments of f.

A path between vertices v and w in (G is defined, as usual, as a sequence of distinct
edges {v1,va2},{ve,v3},. .., {vr_1,vp} in E with v; = v, and v, = w. A cyecle in G is
a path between a vertex v and itself. If there is a path between v and w, then v and
w are sald to be connected in G. Since vertices are always considered to be connected
to themselves, connectedness is an equivalence relation on the vertices of G; the disjoint
equivalence classes induce disjoint subgraphs of GG called the (connected) components of
G. If G comprises a single component—as will be the case for the majority of factor
graphs considered in this paper—then G is said to be connected.

A graph G is a tree if it is connected and has no cycles. A graph G is a tree if and
only if there is a unique path between any pair of distinct vertices in G. In a tree, a vertex
v is said to be a leaf node if d(v) < 1. In any finite tree of more than one node, there are
always at least two leaf nodes. If v and w are two arbitrary but distinct vertices in a tree
(G, and v 1s a leaf node distinct from u and w, then the path from u to w does not pass
through v. Since u and w are arbitrary (though distinct from v) this means that if v and
the edge incident on v are deleted from G, the resulting graph is still a tree.

More generally, if G is a tree then the graph obtained by cutting (i.e., removing)
any edge {v,w} from G is the union of two components, one denoted (., (containing
v, but not w) and the other denoted G, (containing w but not v), both of which are
themselves trees. The notation is intended to be mnemonic: G,,_,, is the subgraph of G
as “viewed” from the edge {v,w} while facing in the direction of v.

Variables corresponding to nodes in distinct components of a factor graph F' are said



to contribute independently to the corresponding (global) function. More generally, two
variable subsets Xg and Xpg contribute independently to ¢g if £ and E’ are contained
in distinct components of F. If g is the joint probability mass or density function of a
collection of random variables, and if z; and z; are variables that contribute independently
to g, then the corresponding random variables are independent. (The converse is not
necessarily true.)

We will also need the following useful notation called “Iverson’s convention” [15,
p. 24] for indicating the truth of a logical proposition: if P is a Boolean proposition, then
P] is the binary function that indicates whether or not P is true, i.e.,

[P]:{l if P; (4)

0 otherwise.

We will use Iverson’s convention in formulas only in those contexts in which it is sensible to
have a {0, 1 }-valued quantity. We will occasionally use square brackets simply as brackets,
but this should cause no confusion since the enclosed quantity will in those cases not be
a Boolean proposition.

We will often have occasion to consider binary indicator functions, i.e., {0, 1 }-valued
functions of several variables. A convenient graphical representation for a binary indicator
function of three variables taking values in finite alphabets is a trellis section. If f(x,y, z)
is such a function, then there exists a set B C A, x A, x A, such that f(z,y,z) =
[(z,y,2) € B]. We take the set B as defining the set of labeled edges in a directed
bipartite graph, called a trellis section. We take the set A, as the set of “left vertices,”
the set A, as the set of “right vertices,” and the set A, as the set of “edge labels.” FEach
triple (z,y,z) € B defines an edge with left vertex x, right vertex z, and label y. For
example, for binary variables z, y, and z, (considered as elements of the field GF(2)) the
trellis sections corresponding to [z 4+ y = z] and [xy = 2| are shown in Fig. 3(a) and (b),
respectively. In this figure, as in all of our figures of trellis sections, we have placed the
left vertices on the left and the right vertices on the right, so that an arrow indicating the
orientation of an edge is not required.

0@ — 0 0 o.(iE;;)o
1
0

1
10— 0 1 16— 1 @1
(a) (b)

Figure 3: Trellis sections corresponding to binary indicator functions of three variables: (a)
[z +y = =] (b) [zy = 2].



1.5 Organization of the Paper

The remainder of this paper is organized as follows. In Section 2, to illustrate the broad
applicability of factor graphs, and to motivate the remainder of the paper, we provide a
number of examples of factor graphs in a variety of areas including coding theory, systems
theory, probability theory, neural networks and signal processing.

In Section 3, we study cross-sections and projections of functions, and formulate
the general notion of a “summary operator” that acts on a function projection to create
marginal functions.

The operation of the sum-product algorithm is described in Section 4. As we have
already briefly described, the sum-product algorithm operates using a local computational
procedure that is characterized by one conceptually simple computational rule. In a tree,
we prove that this procedure results in exact function marginalization. (In Appendix B
we provide a complexity analysis for the important case in which the summary operator
is defined in terms of a sum operation like that in the example of Section 1.3.)

In Section 5 we apply the sum-product algorithm to the factor graphs of Section 2,
and obtain a variety of well-known algorithms as special cases. These include the for-
ward /backward algorithm, the Viterbi algorithm, Pearl’s beliel propagation algorithms
for Bayesian networks, and the Kalman filter.

In Section 6, we describe some of the possible transformations that may be applied
to a factor graph without changing the function that it represents. This will be used
to motivate a procedure for exact marginalization in factor graphs with cycles. As an
application of this procedure, we derive a Fast Fourier Transform algorithm as a special
case of the sum-product algorithm.

Some concluding remarks are offered in Section 7.

2 Examples of Factor Graphs

Having defined the general concept of factor graphs, we now give some examples of the
way in which factor graphs may be used to represent useful functions. In Section 5, we
will describe some of the applications of the sum-product algorithm using these graphs.

Among all multi-variable functions that we might wish to represent by a factor graph,
two particular classes stand out: set membership indicator functions, whose value is either
0 or 1, and probability distributions. Such functions are often interpreted as models—
set theoretic or probabilistic, respectively—of a physical system. For example, Willems’
system theory [40] starts from the view that a “system” (i.e., a model) is simply a set



of allowed trajectories in some configuration space. Factorizations of such functions can
give important structural information about the model. Moreover, the structure of the
factor graph has a strong influence on the performance of the sum-product algorithm;
e.g., we will see in Section 4 that the algorithm is “exact,” in a well-defined sense, only
if the graph has no cycles. We shall see below that a number of established modeling
styles, both set theoretic and probabilistic, correspond to factor graphs with a particular
structure.

2.1 Indicating Set Membership: Tanner Graphs

We start with set membership indicator functions. As usual let S be an index set, and
let Ag denote a configuration space. In many applications, particularly in coding theory,
we work with a fixed subset C' of Ag, which we think of as the set of codewords or valid
configurations. In these applications, we will be interested in the set membership indicator
function

9(Xs): As — {0,1}
defined, for all a € Ag, by

1 ifaeC,

0 otherwise.

)= lae 1= {

Of course, in this paper, we will be interested in situations in which g(Xg) factors
as in (2). In particular, suppose that each factor, fg(Xg), is itself a binary indicator
function, that indicates whether a particular subconfiguration ag is “locally valid.” Both
the global function and all local functions take values in the set {0,1}, considered as a
subset of the reals under the usual multiplication. In this setup, a configuration a € Ag
is valid (i.e., g(a) = 1) if and only if fg(ag) = 1 for all £ € ). The product acts as a
logical conjunction (AND) operator: a (global) configuration is valid if and only if all of
its subconfigurations are valid.

In this context, local functions are often referred to as (local) checks, and the cor-
responding function nodes in the factor graph are also called check nodes. Given a code
C C As, we will often (somewhat loosely) refer to a factor graph representation for C;
what we strictly mean in such situations is a factor graph representation for the indicator
function g(a) = [a € C]. We will often refer to a factor graph for a set membership
indicator function that factors as a product of local checks as a Tanner graph.

Example 1. (Linear codes)
Of course, every code has a factor graph representation (and in general more than one). A



convenient way to construct a factor graph for a linear code is to start with a parity-check
matrix for the code.

To illustrate, consider the linear code C' over GGF(2), defined by the parity check
matrix

110010
H=]101100T1]/, (5)
101100
consisting of of all binary 6-tuples x = (71, 29,... ,7¢) satisfying HxT = 0. Since every

linear code has a parity-check matrix, this approach applies to all linear codes.

In effect, each row of the parity-check matrix gives us an equation that must be
satisfied by x, and x € ' if and only if all equations are satisfied. Thus, if a binary func-
tion indicating satisfaction of each equation is introduced, the product of these functions
indicates membership in the code.

In our example, H has three rows, and hence the code membership indicator function
p(x1,22,... ,26) can be written as a product of three local indicator functions:

pey, x2,...,26) = [(21,22,...,26) € C]
= [r11Dry D as = 0][12 D 23D w6 = 0[2) © 23 D 24 = 0],

where we have again used Iverson’s convention and where @& denotes the sum in GF(2).
The corresponding factor graph is shown in Fig. 4.

Figure 4: A factor graph for the binary linear code of Example 1.

In Fig. 4, we have used a special symbol for the parity checks (a square with a “+”
sign instead of a black square). In fact, we will freely use a variety of symbols for function
nodes, depending on the type of local function. Variable nodes will always be drawn as
circles; double circles (as in Fig. 6, described below) will sometimes be used to indicate
auxiliary variables (states).

Example 2. (Logic circuits)
Many readers may be surprised to note that they are already quite familiar with certain

10



factor graphs, for example, the factor graph shown in Fig. 5. Here, the local checks are
drawn as logic gates, to remind us of the definition of the corresponding binary indicator
function. For example, the AND gate with inputs vy and us and output x; represents the
binary indicator function f(uy,us, 1) = [z1 = uy AND ug].

Viewed as a factor graph, the logic circuit of Fig. 5 represents the global function
g(ur, ug, usg, wg, 1,9, y) = [X1 = uy AND ug][r2 = us AND uy)[y = 21 OR z3].  (6)

The function ¢ takes on the value 1 if and only if its arguments form a configuration
consistent with the correct functioning of the logic circuit.

In general, any logic circuit can be viewed as a factor graph. The local function corre-
sponding to some elementary circuit takes on the value 1 if and only if the corresponding
variables behave (locally) as required by the circuit. If necessary, auxiliary variables (not
directly observable as input or outputs) like z; and 5 in Fig. 5 may be introduced be-
tween logic gates. As we shall see in the next example, the introduction of such auxiliary
variables can give rise to particularly “nice” representations of set-membership indicator
functions.

@
>
@

Figure 5: A logic circuit—also a factor graph!

17 77

Example 3. (Auxiliary variables)

When dealing with binary functions indicating membership in some set C' C Ag of valid
configurations, it will often be useful to introduce auziliary or state or hidden variables.
By this, we mean the introduction of a set 7' > S, and a set Xp\g of variables indexed by
T but not by 5, called auxiliary variables.

In this setup, we view Ag as being the set of subconfigurations with respect to .S of the
enlarged configuration space Ar. We can then introduce a set D C Ar of configurations
in the enlarged space. Provided that Dg = (| i.e., that the subconfigurations of the
elements of D with respect to S is equal to €', we will consider a factor graph for D to be
a valid factor graph for C. Following Forney [10] we will sometimes refer to such a factor
graph—and any factor graph for a set membership indicator function having auxiliary
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variables—as as a TWL (Tanner/Wiberg/Loeliger) graph for C'. As mentioned earlier,
auxiliary variable nodes are indicated with a double circle in our factor graph diagrams.

To illustrate this idea, Fig. 6(b) shows a TWL graph for the binary code of Example 1.
In addition to the variable nodes xy, x3, ..., xg, there are also variable nodes for the
auxiliary variables sq, s1, ..., sg. The definition of the local checks, which are drawn as
generic function nodes (black squares), is given in terms of a trellis for the code, which is

shown in Fig. 6(a).

A trellis for C' is defined by the property that the sequence of edge labels encountered
in each directed path (left to right) from the leftmost vertex to the rightmost vertex in
the trellis is always a codeword in C', and that each codeword is represented by at least
one such path.

Here, the auxiliary variables sqg, ..., sg correspond to the trellis states, and each
local check represents one trellis section, i.e., the ith local function (counting from the
left) indicates which triples (s;_1,;,s;) are valid (state, output, next state) transitions
in the trellis, drawn according to our convention for indicator functions of three variables
introduced in Section 1.

0—.\
e e

1 1 1 —@— 1 0 1
.<0 1@71 1 o>.
el Do

1 1

Figure 6: A trellis (a) and the corresponding TWL graph (b) for the code of Fig. 4.

In this example, the second trellis section from the left in Fig. 6 consists of the
following triples (s1, xq, s2):

S, = {(0,0,0),(0,1,2),(1,1,1),(1,0,3)}, (7)

where the alphabet of the state variables s; and s, was taken to be {0,1} and {0,1,2,3},
respectively, numbered from bottom to top in Fig. 6(a). The corresponding check (i.e.,
local function) in the TWL graph is the indicator function f(sy, za,s2) = [(s1, 22, 82) € Sa.
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The method described in this example to obtain a factor graph from a trellis is
completely general and applies to any trellis. Since every code can be represented by
a trellis (see [36] for a recent survey of results in the theory of the trellis structure of
codes), this shows that a cycle-free factor graph exists for every code (in fact, for every
set membership function).

In general, the purpose of introducing auxiliary variables (states) is to obtain “nice”
factorizations of the global function that are not otherwise possible.

Example 4. (State-space models)

Trellises are convenient representations for a variety of signal models. For example, the
generic factor graph of Fig. 7 can represent any time-invariant (or indeed, time-varying)
state space model. As in Fig. 6, each local check represents a trellis section, an indicator
function for the set of allowed combinations of left state, input symbol, output symbol,
and right state. (Here, a trellis edge has two labels.)

For example, the classical linear state space model is given by the equations

z(i+1) = Az(j) + Bu(j),

. . 8

y(g) = Cz(j) + Du(y), ®)

where j € Z is the discrete time index, where u(j) = [u1(7), ... ,ux(J)] are the time-j input
variables, y(7) = [y1(J),- .- ,yn(7)] are the output variables, z(j) = [z1(J), ...,z ()] are

the state variables, and where A, B, (', and D are matrices of the appropriate dimensions.
The equation is over some (finite or infinite) field F'.

Any such system gives rise to the factor graph of Fig. 7. The time-j check function
F@(3),u(5),y(G), x(G+ 1) F™ x FEx F" x F™ — {0, 1} is

J(2(3),u(3),9(5),2(G + 1)) = [2(G + 1) = Az(5) + Bu(h)lly(5) = C(j) + Du(5)]-

In other words, the check function enforces the local behavior required by (8).

Figure 7: Generic factor graph for a time-invariant trellis.
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2.2 Probability Distributions

We turn now to another important class of functions that we will represent by factor
graphs: probability distributions. Since conditional and unconditional independence of
random variables is expressed in terms of a factorization of their joint probability mass or
density function, factor graphs for probability distributions arise in many situations. We
expose one of our primary application interests by starting with an example from coding
theory.

Example 5. (Decoding)

Consider the situation most often modeled in coding theory, in which a codeword (x4, ... , z,)
is selected with uniform probability from a code C of length n, and transmitted over a
discrete memoryless channel with corresponding output (yi,... ,y,). Since the channel is
memoryless, by definition the conditional probability mass or density function evaluated
at a particular channel output assumes the product form:

Plnsosalonso ) = [ ko).

The a priori probability of selecting a particular codeword is a constant, and hence the
a priori joint probability mass function for the codeword symbols is proportional to the
code set membership indicator function. It follows that the joint probability mass function
of {x1,... ., xn,y1,... ,yn} is proportional to

@1, Ty Yty yn) = (T4, .. 20) € C]Hf(yim). (9)

Of course, as described in the previous subsection, the code membership indicator
function itself may factor into a product of local indicator functions. For example if C' is
the binary linear code of Example 1, we have

f(ll’}l,...,ll’}g;,yl,...,y(g) = [$1@$2@$5:0]'[ZL’Q@Jfg@l’G:O]'[1’1@&’}3@1’4:0]'
6
IT 7 (wiles).
=1

whose factor graph is shown in Fig. 8(a). We see that a factor graph for the joint proba-
bility mass function of codeword symbols and channel output symbols is obtained simply
by augmenting the factor graph for the code itself.

In decoding, we invariably work with the conditional joint probability mass function
for the codeword symbols given the observation of the channel output symbols. As will be
discussed in more detail in Section 3.1, in general function terms we deal with a (scaled)

14



(b)

Figure 8: Factor graphs for (a) the joint probability density function of channel input and
output for the binary linear code of Fig. 4, (b) the cross-section after observation of a particular
channel output vector.

cross-section of the joint probability mass function defined in (9). It turns out that a
factor graph for a function cross-section is obtained from a factor graph for the function
simply by removing the nodes corresponding to the observed variables, and replacing all
local functions with their cross-sections; this is shown for our example code in Fig. 8(b).
The cross-section of the function f(y;|x;) can be interpreted as a function of z; with
parameter y;.

Example 6. (Markov chains, hidden Markov models, and factor graphs with arrows)
In general, let f(zq,...,2,) denote the joint probability mass function of a collection of
random variables. By the chain rule of conditional probability, we may always express
this function as

f(:ljlv"' 7$n) = Hf(x2|$17 7$i—1)-

For example if n = 4, we have

f(l’h s 731?4) = f($1)f($2|$1)f($3|3717xz)f($4|1?17$27$3)
which has the factor graph representation shown in Fig. 9(b).

Because of this chain rule factorization, in situations involving probability distri-
butions, we will often have local functions of the form f(z;|a(z;)), where a(z;) is some
collection of variables referred to as the parents of x;. In this case, motivated by a similar
convention in Bayesian networks [20, 31] (see example 8, below), we will sometimes indi-
cate the child, i.e., x;, in this relationship by placing an arrow on the edge leading from
the local function f to x;. We have followed this arrow convention in Fig. 9(b)—(d), and
elsewhere in this paper.
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Figure 9: Factor graphs for probability distributions: (a) the trivial factor graph, (b) the
chain-rule factorization, (c) a Markov chain, (d) a hidden Markov model.

In general, since all variables appear as arguments of f(z,|z1,...,2,-1), the factor
graph of Fig. 9(b) has no advantage over the trivial factor graph shown in Fig. 9(a). On
the other hand, suppose that random variables Xy, X,,...,X,, (in that order) form a
Markov chain. We then obtain the nontrivial factorization

f(l’h e 751?n) = Hf($i|$i—1)

whose factor graph is shown in Fig. 9(c).

If, in this Markov chain example, we cannot observe each X; directly, but instead
can observe only the output Y,; of a memoryless channel with X; as input, we obtain
a so-called “hidden Markov model.” The joint probability mass or density function for
these random variables then factors as

flor, oo syt Yn) = Hf zilzi1) fyile:)

whose factor graph is shown in Fig. 9(d). Hidden Markov models are widely used in
a variety of applications; see, e.g., [33] for a tutorial emphasizing applications in signal
processing.

The strong resemblance between the factor graphs of Fig. 9(c) and (d) and the factor
graphs representing trellises (Figs. 6(b) and 7) is not accidental; trellises can be viewed
as Markov models for codes.

Of course, factor graphs are not the first graph-based language for describing probabil-
ity distributions. In the next two examples, we describe very briefly the close relationship
between factor graphs and models based on undirected graphs (Markov random fields)
and models based on directed acyclic graphs (Bayesian networks).
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Example 7. (Markov random fields)

A Markov random field (see, e.g., [21]) is a graphical model based on an undirected graph
G = (V,E) in which each node corresponds to a random variable. The graph G is a
Markov random field (MRF) if the distribution p(vy,...,v,) satisfies the local Markov

property:
(Vo e V) p(o|V\{v}) = p(vln(v)), (10)

where, as usual, n(v) denotes the set of neighbors of v. In other words, G is an MRF if
every variable v is independent of non-neighboring variables in the graph, given the values
of its immediate neighbors. MRFs are well developed in statistics, and have been used
in a variety of applications (see, e.g., [21, 32, 19, 18]). Kschischang and Frey [22] give a
brief discussion of the use of MRF's to describe codes.

Recall that a cligue in a graph is a collection of vertices which are all pairwise
neighbors. Under fairly general conditions (e.g., positivity of the joint probability density
is sufficient), the joint probability mass function of an MRF can be expressed as the
product of a collection of Gibbs potential functions, defined on the set @) of cliques in the
MRF. (Indeed, some authors takes this as the defining property of an MRF.) What this

means is that the distribution factors as

p(vi,va, . yon) = 270 [ fe(Va) (11)

EeQ

where 77! is a normalizing constant, and each F € @ is a clique. For example (¢f. Fig. 1),
the MRF in Fig. 10(a) can be used to express the factorization

P(Uh Vg, U3, Vg, U5) = Z_lfc(vh V2, Us)fD(Uza’ U4)fE(U4, U5)-

(Although there are other cliques in this graph, e.g., {v1,v2}, we assume that any addi-
tional factors are absorbed in one of the factors given; for example, a factor of f(vy,vz)

would be absorbed by fe (v, vq,v3).)

Clearly (11) has precisely the structure needed for a factor graph representation.
Indeed, a factor graph representation may be preferable to an MRF in expressing such
a factorization, since distinct factorizations, i.e., factorizations with different @s in (11),
may yield precisely the same underlying MRF graph, whereas they will always yield
distinct factor graphs. (An example in a coding context of this MRF ambiguity is given
in [22].)

In the opposite direction, a factor graph F' that represents a joint probability distri-
bution can be converted to a Markov random field via a component of the second higher
power graph F? [22].

Let F'(S,Q) be a factor graph, and let F* be the graph with the same vertex set as
F, with an edge between two vertices v and v’ in F% if and only if there is there is a path
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Figure 10: Graphical probability models: (a) a Markov random field, (b) a Bayesian network,
(c) a factor graph.

of length two from v to v’ in F. Since F' is bipartite, F? decomposes into at least two
components: one component, F2, involving only variable nodes, and the other involving
only function nodes. Since the arguments of a function node in F' are connected by a
path of length two in F, these arguments form a clique in F?. For example, Fig. 10(a)
shows F2 for the factor graph F of Fig. 1.

The following theorem is proved in Appendix A.

Theorem 1 [f F(S,Q) is a factor graph that represents a probability distribution as a
product of non-negative factors, then F2 is a Markov random field.

This theorem can be interpreted as saying that, in a sense, a factor graph is the “square
root” of a Markov random field.

Example 8. (Bayesian networks)

Bayesian networks (see, e.g., [31, 20, 11]) are graphical models for a collection of random
variables that are based on directed acyclic graphs (DAGs). Bayesian networks, combined
with Pearl’s “belief propagation algorithm” [31], have become an important tool in expert
systems over the past decade. The first to connect Bayesian networks and belief propaga-
tion with applications in coding theory were MacKay and Neal [25], who independently
re-discovered Gallager’s earlier work on low-density parity-check codes [14] (including
Gallager’s decoding algorithm). More recently, at least two papers [22, 30] develop a
view of the “turbo decoding” algorithm [7] as an instance of probability propagation in a
Bayesian network code model.

Each node v in a Bayesian network is associated with a random variable. Denoting
by a(v) the set of parents of v (i.e., the set of vertices from which an edge is incident on
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v), the distribution represented by the Bayesian network assumes the form

p(v1,vg, ... 0,) = Hp(vﬂa(vi)), (12)

where, if a(v;) = 0, (i.e., v; has no parents) then we take p(v;|)) = p(v;). For example—
cf. (1)—Fig. 10(b) shows a Bayesian network that expresses the factorization

p(v1, v2, v3,v4,v5) = p(v1)p(v2)p(vs|vr, v2)p(vs|vs)p(vs|vs). (13)

Again, as do Markov random fields, Bayesian networks express a factorization of a
joint probability distribution that is suitable for representation by a factor graph. The
factor graph corresponding to (13) is shown in Fig. 10(c); ¢f. Fig. 1.

The arrows in a Bayesian network are often useful in modeling the “flow of causality”
in practical situations; see, e.g., [31]. Provided that it is not required that a child variable
take on some particular value, it is straightforward to simulate a Bayesian network, i.e.,
draw configurations of the variables consistent with the represented distribution. Starting
from the variables having no parents, once values have been assigned to the parents of
a particular variable z;, one simply randomly assigns a value to x; according the (local)
conditional probability distribution p(z;|a(z;)). Our arrow convention for factor graphs,
noted earlier, and illustrated in Fig. 10(c), allows us to retain this advantage of Bayesian
networks.

We note that factor graphs are more general than either Markov random fields or
Bayesian networks, since they can be used to describe functions that are not necessarily
probability distributions. Furthermore, factor graphs have the stronger property that
every Markov random field or Bayesian network can be redrawn as a factor graph without
information loss, while the converse is not true.

Example 9. (Logic circuits revisited)

Probability models are often obtained as an extension of behavioral models. One such
case was given in Example 5. For another example, consider the logic circuit of Fig. 5,
and suppose that {uq,...,us} are random variables that assume particular configurations
according to some a priort probability distribution. It is not difficult to see that, e.g., the
joint probability mass function of wy, uq, and z; is given by

flur,ug, zy) = f12(ur, uz)[xy = uy AND uy]

where fi2(u1,us) is the joint probability mass function for u; and wuy. In this example,
we will have

f(U17U27U37U47$17$27y) = f1,2,3,4(U17U27U37U4)9(U17U2,u3,u4,$1,l‘2,y)
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Figure 11: A factor graph representation for the joint probability mass function of the variables
in the logic circuit example.

where fi 23.4() is the joint probability mass function for the w;s and g(+) is the indicator
function defined in (6). The factor graph corresponding to the case where f(uy,ug, us, us)
itself factors as fi(u1)f2(uz2) f3.4(us, uq) is shown in Fig. 11.

Fig. 11 includes arrows, showing the “flow of causality” from the inputs to the outputs
of the logic gates. The pair of input variables us, uy are “clustered,” i.e., treated as a single
variable. (Variable clustering and other transformations of factor graphs is discussed in
Section 6.) In general, for subsystems with a deterministic input/output relationship
among variables, an output variable z; can be viewed as a child variable having the input
variables as parents; for each configuration of the parents, the corresponding conditional
probability distribution assigns unit mass to the configuration for z; consistent with the
given input/output relationship.

As discussed, the arrows in Fig. 11 are useful in simulations of the distribution rep-
resented by the factor graph, as it is relatively straightforward to go from “inputs” to
“outputs” through the graph. As we shall see, the sum-product algorithm will be useful
for reasoning in the opposite direction, i.e., computing, say, conditional probability mass
functions for the system inputs (or hidden variables) given the observed system output.
For example, given models for “faults” in the various subsystems, we may be able to
use the sum-product algorithm to reason about the probable cause of an observed faulty
output.

2.3 Further Examples

We now give a number of further examples of factor graphs that might be used in a variety
of fields, including artificial intelligence, neural networks, signal processing, optimization,
and coding theory.
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Example 10. (Computer vision and neural network models)

Graphical models have found an impressive place in the field of neural network models of
perception [18, 17,9, 12]. (See [11] for a textbook treatment.) Traditional artificial neural
networks called “multilayer perceptrons” [34] treat perceptual inference as a function
approximation problem. For example, the perceptron’s objective might be to predict
the relative shift between two images, providing a way to estimate depth. Initially, the
perceptron’s parameters are set to random values and the perceptron is very bad at
predicting depth. Given a set of training images that are labeled by depth values, the
perceptron’s parameters can be estimated so that it can predict depth from a pair of
images.

In the more realistic “unsupervised learning” situation, depth labels are not provided,
but the neural network is supposed to extract useful structure from the data. One fruitful
approach is to design algorithms that learn efficient source codes for the data. The
parameters of a probability model are adjusted so as to minimize the relative entropy
between the empirical data distribution and the distribution given by the model.

The graphical model (factor graph) framework provides a way to specify neurally
plausible probability models. In a neural network factor graph, we can associate one
local function with each variable such that the local function gives the probability of the
variable given the activities of its local input variables. For example, the probability that
a binary variable z; is 1, given its binary inputs {z; : j € I;} may take the form,

Plz; = 1{z; g € L}) = 1/(1 + exp[—) ;o wijz;]),
where w;; is the weight on the edge connecting x; and z;.

In the simplest case, we create one variable for each input variable. However, we
can also introduce unobserved “hidden” or “latent” variables into the graphical model.
Once the model is trained so that the marginal distribution over the visible variables is
close to the empirical data distribution, we hope the hidden variables will represent useful
features.

Although the details of these models and learning algorithms fall beyond the scope
of this paper, we present here a brief example. See [13] for the details of a model and a
learning algorithm for real-valued variables. In this example, we discuss a binary version
of this problem for clarity. Each image in the pair is one-dimensional and contains 6 binary
pixels. The training data is generated by randomly drawing pixel patterns for the first
image and then shifting the image one pixel to the right or left (with equal probability)
to produce the second image. Fig. 12(b) shows 4 examples of these image pairs, with the
pair of images placed to highlight the relative shift.

Fig. 12(a) shows the factor graph structure that can be learned from examples of
these image pairs. Initially, each variable was connected to all variables in adjacent layers
and the parameters were set to random values. After learning, the weights associated with
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Figure 12: (a) The factor graph for a neural-network model of depth perception. (b) Examples
of training cases for the simplified depth estimation problem.

unneeded edges (not shown) become close to zero. According to the remaining edges, each
middle-layer variable represents the dependence between a pixel from the first image and
another pixel from the second image. Also, the middle-layer variables can be separated
into two groups: in one group, each variable links a pixel from one image to the pixel on
its left from the other image; in the other group, right-shift relationships are represented.
The dependencies between the middle-layer variables are captured by a “depth variable”.
For one depth activation, all the middle-layer variables in one group are shut off, whereas
the middle-layer variables in the other group may or may not be active. Without labeled
training data, the unsupervised learning algorithm can extract an architecture that can
predict depth.

One challenging research problem is the development of algorithms that can learn
structures like the one described above, but on a much larger scale. In real-world data,
the images are 2-dimensional, there is a much larger number of pixels, the depth varies
across the image, and the network must interact with other feature detectors and other
sensory modalities.

Example 11. (The DFT kernel)

Next, we provide an example from the field of signal processing, where a widely used
tool for the analysis of discrete-time signals is the discrete Fourier transform. Let w =
(wo,...,wy_1) be a complex-valued N-tuple, and let @ = &2V with j = /=1, be
a primitive Nth root of unity. Recall that the discrete Fourier transform of w is the



complex-valued N-tuple W = (W, ..., Wx_1) where

N-1
We=> w, Q™™ k=0,1,...,N—1 (14)

n=0

Consider now the case where N is a power of two, e.g., N = 8 for concreteness. We
express variables n and k in (14) in binary; more precisely, we let n = 4z + 221 4+ x¢ and
let & = 4y; 4 2y; + yo, where z; and y; take values from {0,1}. We write the DFT kernel,
which we take as our global function, in terms of the z;s and y;s as

g(xo’ T1, T2, Yo, Y1, y2) — w4z2+2$1+I0Q—(4z2+2z1+zo)(4y2+2y1+y0)

= f($07 T1, 3;2)(_1)9621/0(_1)9511/1(_1)z0y2 (]')—1’03/1 (j)_l'lyoﬂ—l‘oyo

where f(zg,21,T2) = Wapy42:,42, and we have used the relations Q' = Q* =1, Q! = —1,
and Q? = j. We see that the DFT kernel factors into a product of local functions as
expressed by the factor graph of Fig. 13.

We observe that

Wi = Wiy, 42y, 440 = Z Z Zg($07$17$27y07y17y2) (15)
o 1 i)

so that the DFT can be viewed as a marginal function, much like a probability mass
function. When N is composite, similar prime-factor-based decompositions of n and k&
will result in similar factor graph representations for the DFT kernel. In Section 6, we
will see that such factor graph representations can lead to fast Fourier transform (FFT)
algorithms.

S
Figure 13: A factor graph for the discrete Fourier transform kernel function.

Example 12. (Nonserial dynamic programming)

In the field of optimization, in their formulation [8] of so-called nonserial dynamic pro-
gramming problems, Bertelé and Brioschi consider functions that are the additive com-
position of local functions. These types of problems fit naturally in the factor graph
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framework, provided that we view the ‘multiplication’ operation in R as real-valued ad-
dition. If; as in [8], we are interested in minima and maxima of the global function, we
will take as a summary operator the ‘min’ or ‘max’ operation.

It is interesting to observe the close relationship between the “interaction graph”
of a nonserial dynamic programming problem [8, p. 4] and the graph corresponding to a
Markov random field (see example 7): they are really the same object defined with respect
to a different binary operation: function addition in the nonserial dynamic programming
case and function multiplication in the Markov random field case. As in the the Markov
random field case, interaction graphs can be recovered from the second higher power of
the factor graph.

Example 13. (Weight enumerating functions)

Finally, we present a non-probabilistic example from coding theory. Let C' be a linear code
of length n and let [(z1,...,z,) € C] be the binary indicator function for membership in
C. Denote the Hamming weight of a codeword x € C by wt(x). Let z be an indeterminate.
Then the function

n

gy, .. x,) =[(21,... ,2,) € C]HZ[I#O]

i=1

takes on the value z““*) whenever x is a valid codeword, and zero otherwise. We can
think of ¢ as a modified indicator function that not only indicates whether x is a valid
codeword, but also returns the Hamming weight of x (as the z-exponent) whenever x
is a valid codeword. If we define a summary operator in terms of the usual addition of
polynomials in z, then ¢ | Xj is the Hamming weight enumerator for C.

A factor graph representation for g can be obtained by augmenting a factor graph
representation for the code membership indicator function with the local functions z[##%
for 2 = 1,... ,n. For the code of example 1, this would lead to a factor graph with the
structure of Fig. 8(b).

3 Function Cross-Sections, Projections, and Summaries

As in Section 1, let Xg be a collection of variables indexed by a set 5, let Ag be a
configuration space for these variables, and let g: As — R be a function of these variables
into a commutative semigroup R. If g factors as in (2), let F/(S, Q) be the corresponding
factor graph.
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3.1 Cross-Sections

Let £ C S be a subset of the variable index set S, let Xz be the set of variables indexed
by FE. and let ag be a particular subconfiguration with respect to E, viewed, as defined
in Section 1, as the multiple variable assignment Xz = ag. Every such assignment yields
a function cross-section

9 Xs\5|| XE = ag).

For example if g(xy, xq,23) = x12923, then g(x1, x2]|zs = 5) = bryay. If £ = S, then
9(Xp||XE = ag) is the constant g(ag).

A factor graph for the cross-section ¢(Xo\g||Xr = ag) is obtained from a factor
graph for g simply by

1. replacing each local function having an argument z; for any ¢ € £ with its corre-
sponding cross-section; and

2. omitting variable nodes indexed by K and any edges incident on them.

For example, let g(x1, z2, x3) = a(x1, 22)b(x2, x3), with factor graph shown in Fig. 14(a).
A factor graph for the cross-section g(z1,z3||z2 = a2) = a(z1]|z2 = a2)b(zs||z2 = a2) is

shown in Fig. 14(b).

@) () (@) ? ?

a(xy, x2) b(xq, x3) a(xy]|ze = ag) b(xs||ze = az)
(a) (b)

Figure 14: Factor graphs for (a) g(x1, x2,x3) = a(x1, x2)b(x2, x3), and (b) the cross-section

g(x1, x3]|z0 = az) = a(zq||x2 = a2)b(xs)|xe = az).

If g(Xs) is a probability mass or density function then its cross-section g(Xs\g|| X5 =
ag) is linearly proportional to the conditional probability mass or density function for the
variables indexed by S\ F, given the particular subconfiguration ap for the variables

indexed by F.

Two variables z; and z; contribute independently to the cross-section g(zs\g||Xg =
ag) if and only if z; and z; are contained in distinct components of the factor graph
for the cross-section. Thus, if z; and z; are in the same component of the factor graph
for ¢ to begin with, they contribute independently to the cross-section if and only if the
vertices of £ separate z; and z; in the factor graph for g. (In the probability case, we
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vy z|glz,y,2z) v |g(x.y,z)
0 0 0]g(0,0,0) 0] g(0,0,0)
0 0 1]g(0,0,1) 0]g(0,0,1)
0 1 0]g(0,1,0) 0] g(0,1,0)
0 1 1[g(0,1,1) 0]g(0,1,1)
1 0 0g(1,0,0) 1 |g(1,0,0)
1 0 1]g(1,0,1) 1]g(1,0,1)
1 1 0|g(1,1,0) 1]g(1,1,0)
11 1]g(1,1,1) 1]g(1,1,1)
(a) (b)

Table 1: (a) A function viewed as a relation. (b) The projection on its first coordinate.

would say that the corresponding random variables are conditionally independent given
those random variables indexed by F.)

If variable subsets Xz and Xg\ g contribute independently to a function g(Xs), then,
up to scale, the cross-section g(Xs\g||Xr = ag) for every configuration z; of X; “looks the
same.” More precisely, there exists a function f(Xg ;) = R such that every cross-section
g(zs\1|| X1 = ;) is a scalar multiple of f(Xg\1).

3.2 Projections and Summaries

A function g: As — R can be viewed as a relation (i.e., as a particular subset GG of Asx R)
in which, for every w € Ag, there is a unique element (w, g(w)) in G. The set As is the
domain of G and R is the codomain.

Consider now the projection of G on some set of coordinates in its domain. Unlike
a cross-section, the projection of a function results in a relation that in general is not
a function. For example, the projection of the function shown in Table 1(a) on its first
coordinate (z) is the relation shown in Table 1(b). This relation is not in general a function
f: A, — R since a particular z € A, can stand in relation to more than one element
of R. Nevertheless, such a projection can be converted to a function by introducing an
operator that “summarizes” in some sense the multiple function values associated with
each configuration of the relation domain.

For example, if g is real-valued, one way of summarizing the multiple function values
associated with each value of x would be to take their sum, i.e., define a new function
h(z) =3, . 9(z,y,2). If g were a probability mass function, then A would be a marginal
probability mass function. Another possible summary operation would be to take the
maximum of the multiple function values, i.e., define h(z) = max, . g(z,y,z). Clearly a
large number of summary operators are possible.
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We first introduce a notation for such an operator. If g(X¢): Ac — R is a function
and B C (', we denote by

g(XC)i«XB: AB — R

the new function—called the marginal or summary of g for Xg—obtained by “summa-
rizing,” for each fixed configuration of the variables in Xp, the multiple function values
associated with all possible configurations of those arguments not in Xg. For convenience
we will often refer the variables in X¢ \ Xp as being summarized; by this we mean, of
course, the summary of the corresponding function values. Thus, if ¢ is the function of
Table 1, the marginal of g for {z;}, i.e., the summary of the multiple function values in
Table 1(b), would be denoted as g(z1,x2,x3) | {x1}, or simply g(z1, 2, 23) | z1, and we
would refer to xy3 and z3 as having been summarized.

Although it would seem that a summary operator should apply only to the case where
B C €, we extend it to the general case where B and (' are arbitrary subsets of some
index set S by defining

g(XO) i XBZ ABﬁO — R
as

9(Xe) 1 X =9(Xe) | Xne- (16)

In other words, the marginal of g(X¢) for Xp is the function obtained by summarizing
those arguments of ¢ that are not in Xpg, i.e., by summarizing the variables indexed by
C' N (S\ B). Note that g(X¢) | Xp is a summary of all of the function values, i.e., a
summary of g(X¢) itself.

We now consider the properties that a summary operator should possess. For every
nonempty subset B of the index set S, let 45 denote the set of all functions from Ag to
R. We extend this notation to the case where B is empty by defining R4? = R. Suppose
we have a family of mappings such that for every pair { B, C'} of subsets of S, with C' C B,
there is a mapping | Ag: R4® — RA¢ in this family that associates an element of RA¢
(written in suffix notation as g(Xg) J Ac) with each element g(Xg) of BR45. We extend
this family of mappings to arbitrary B and C be defining | Ac: R4® — RABn¢ as in (16),
and denote the result by |.

A family of mappings | as defined in the previous paragraph will be called a summary
operator if, for all R-valued functions f and g and for all variable index sets B, (', and
D, the following axioms are satisfied:

I. BCC= f(Xp)l X =[f(Xp) | Xc] | XB;

2. BCC=[f(XB) 9(Xp)| | Xec = f(XB) [9g(Xp) | Xc];
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3. BOC =0 = [f(Xs) g(Xe)] + Xp = [[(Xa) b Xp] - [9(Xc) | Xo).

These axioms are modeled on the properties of marginal functions in probability theory.

Axiom 1 implies that marginals can be obtained in a sequence of “stages” of ever
more restrictive summaries, and that any such sequence will yield the same function.
Thus, for the example of Table 1,

gz, 22, 23) Lar = (g(z1, 22, 23) L {ar,22}) L 2y
= (g(x1,22,23) | {z1,23}) | 21,
i.e., we can summarize r3 and then x; or vice versa and obtain the same marginal function
in either case. Axioms 2 and 3 describe how summary operators behave with respect to
function products. If B C (', then for every fixed configuration of the variables of X¢,
the function f(Xp) is a constant; Axiom 2 states that this constant can be factored out
from the marginal function. Axiom 3 says that if two functions do not “interact,” i.e.,
if they have no arguments in common, then the marginal of the product is the product
of the marginals. This axiom extends easily to the case of the product of more than two
functions with disjoint arguments.

The following Lemma will be important later.

Lemma 1 If X4 and Xp are disjoint and do not contain x, then

(2, Xa)g(z, Xp)] L & = [f(z, Xa) | 2] - [g(z, Xp) | «].

Proof: We write

[f(z, Xa)g(z, X)Lz = [(f(z, Xa)g(z, XB)) I {z} U X4] |z
[z, Xa)(g(z, Xp) } {z}UXa)] | =
[z, Xa)(g(z, XB) | z)] | =

( lg

[z, Xa) L 2] [g(x, XB) | 7]
where the first equality follows by applying Axiom 1, the second equality follows from

Axiom 2, and the third equality follows from the assumption that X4 and Xg are disjoint,
and the fourth equality follows from another application of Axiom 2. 1

[
[
[
[

This lemma can clearly be extended to the analogous situation involving the product
of more than two functions with arguments intersecting (pairwise) in {z}. For example,
if X4, X and X are pairwise disjoint and do not contain x, then

(2, Xa)g(z, Xp)h(z, Xo)l Lo = [(J(z, Xa)g(z, XB)) | 2] - [A(z, Xc) | 2]
= [f(z,Xa) L 2] - [g(z, XB) | 2] - [h(z, Xc) | 2].
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3.3 Summary Operators via Binary Operations

When all symbol alphabets A;, ¢ € S, are finite, we will often define a summary operator
in terms of a commutative, associative binary operation in R. We denote this binary
operation by ‘+’, thinking of “sum” for “summary.” As in [1, 2, 23, 28, 37, 38], we will
insist that the summary operator + satisfy the distributive law in R, i.e., for all z,y, z € R,

vy = (o y)+ (e 2), (7)

i.e., we will require that (R, +,-) form a semiring, where - is the multiplication operation
usually denoted in this paper by juxtaposition.

For arbitrary subsets B and C of S, we define the marginal function g(Xg) | X¢ as

9(XB) | Xo = Y. 9(Xa), (18)

z;€A; i€ BN(S\C)

i.e., by summing over all configurations of those variables not indexed by C'. When
BN (S\C) is empty, we take g(Xp) | X¢ = g(Xp). This definition clearly gives us a
family of mappings that associate with each element of B4# and element of R48n¢. For
example, the marginal of g with respect to z; for the function of Table 1(b) would be
computed as

g(x1, 9, 23) | 21 = Z Z g(z,y, z).

yeAy 2€EA;

From the distributive law (17) and the commutativity of the product operation in R,
it is clear that the summations in (18) can be performed in an arbitrary order, and hence
Axiom 1 for summary operators is satisfied. Furthermore, from the distributive law (17)
it follows that Axiom 2 is satisfied. Finally, if f and g have no arguments in common,
then the distribute law in R once more implies that Axiom 3 is satisfied. Therefore, we
have the following theorem.

Theorem 2 The family of mappings defined in (18) is a summary operator.

An important example of a summary operator arises in the case that R is the set of re-
als with the usual multiplication, and + is taken as ordinary real addition. When g(z,y, 2)
is the joint probability mass function of random variables X,Y,Z then g(z,y,2) | z is
the marginal probability mass function for X.

More generally, if g(z,y,z) represents a probability density function for the jointly
continuous random variables X, Y, Z, by replacing the sums in (18) with integrals, we
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can define a family of mappings that take a function to the appropriate marginal function,
so that, e.g.,

g(r,y,2) L = =/ / g(w,y,2) dy dz.

It is a straightforward exercise to verify that this definition gives a family of mappings
that satisfies the axioms required of summary operators.

Another possible summary operator when R is the reals is obtained from the “min-
sum” semiring, where - is ordinary addition in R and + is the ‘min’ operator, i.e., x +
y = min(z,y). In this case, g(z,y,2) | z is the minimum of g(z,y,z) taken over all
configurations agreeing at x.

4 The Sum-Product Algorithm

Having introduced the concept of a factor graph in Section 1 and the concept of a summary
operator in Section 3, in this section we combine these concepts by describing a generic
algorithm—the sum-product algorithm—that operates in a factor graph F(S,Q) via a
sequence of “local” computations. These computations follow a single conceptually simple
rule, combining the product and summarization operations. The results of these local
computations are passed as messages along the edges of the factor graph.

In general, a large variety of possible message-passing schedules in a factor graph F
are possible. When F'is a tree, we will present a family of schedules called generalized
forward /backward (GFB) schedules, that cause exactly one message to pass in either
direction on every edge of the tree. We will prove that the result of this computation is
the set of marginal functions g(Xs) | z; for all 1 € S, or for specifici € E C S.

The sum-product algorithm can also be applied to factor graphs with cycles. Because
of the cycles in the graph, an “iterative” algorithm with no natural termination will result.
In contrast with the case of no cycles, the results of the sum-product algorithm operating
in a factor graph with cycles cannot in general be interpreted as being exact function
summaries. However, as we shall make clear later in the paper, some of the most exciting
applications of the sum-product algorithm—for example, the decoding of turbo codes
or low-density parity-check codes—arise precisely in situations in which the underlying
factor graph does have cycles.

As usual, let Xg be a collection of variables indexed by a set 5, let Ag be a config-
uration space for these variables, let g: As — R be a function of these variables into a
commutative semigroup (R,-), and let | denote a summary operator for R-valued func-
tions. Finally, suppose g factors as in (2) for some collection @) of subsets of S, and let
F(S,Q) be the corresponding factor graph.
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4.1 Computation by Message-Passing

The sum-product algorithm is perhaps best described by imagining that there is a pro-
cessor at each node of the underlying factor graph F'. and that the edges in F' represent
channels by which these processors may communicate by sending “messages.” For us,
messages will always be R-valued functions or descriptions thereof.

For example, if z is a (binary) variable taking on values in {0,1}, the real-valued
function f(x) can be described by the vector (f(0), f(1)), and this vector could be passed
as a message along some edge in F. Equivalently, the vector (f(0) + f(1), f(0) — f(1))
contains the same information, and hence, if convenient, could also be taken as a de-
scription of f(x). If f(x) is a probably mass function so that f(0) + f(1) = 1, then a
number of scalar-valued function descriptions (e.g., f(0), f(1), f(0) — f(1), f(0)/f(1),
log(f(0)/f(1)), etc.) would, as convenient, provide adequate description of f. If z is
continuous-valued, and f(z) is drawn from a parameterized set (e.g., a probability den-
sity function in an exponential family), then a vector containing the function parameters
could be used as a description of f.

We will often have cause to form the products of messages. By this we mean, of course,
products of the corresponding functions, not products the actual messages themselves.
Of course, if f(x) and g(z) are two functions of the same discrete variable z, and these
functions are described using ordered vectors containing the function values, then the
vector description of the product of f and ¢ is the component-wise product of the vector
descriptions of f and g.

4.2 The Sum-Product Update Rule

Deferring, for the moment, the question of algorithm initialization, we describe now the
one simple computational rule followed by the sum-product algorithm.

The Sum-Product Update Rule: The message sent from a node v on an edge
e is the product of the local function at v (or the unit function if v is a variable
node) with all messages received at v on edges other than e, summarized for the
variable associated with e.

Note that the message sent on an edge {z, f}, where = is a variable node and z is
a function node, is always a function of the variable x associated with that edge. Let
us denote by ftyu(Z{ysw)) the message sent from node v to node w by the sum-product
algorithm. Then, as illustrated in Fig. 15, the message computations performed by the
sum-product algorithm can be expressed as follows:
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Figure 15: A factor graph fragment, showing the sum-product algorithm update rules.

variable to local function:

poms(@) = [ #rnela) (19)

hen(z)\{f}

local function to variable:

proe(@) = [ F(Xur) T mms(y) | L2 (20)
venif)\e)

The update rule at a variable node = takes on the particularly simple form given
by (19) since there is no local function to include, and the summary for z of a product
of functions of = is simply that product. On the other hand, the update rule at a local
function node given by (20) in general involves nontrivial function multiplications, followed
by an application of the summary operator.

4.3 Message Passing Schedules

Since the message sent by a node v on an edge in general depends on the messages that
have been received on other edges at v, how is message passing initiated? We circumvent
this difficulty by initially supposing that a unit message (i.e., a message representing
the unit function) has arrived on every edge incident on any given vertex. With this
convention, every node is in a position to send a message at any time.

Although not necessary in a practical implementation, we will make the assumption
that message passing is synchronized with a global discrete-time clock. We will assume
that only one message may pass on any edge in any given direction during one clock tick,
and that this message replaces any previous message passed on that edge in the given
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direction. A message sent from node v at time 7 will be a function only of the local
function at v (if any) and the (most recent) messages received at v at times prior to .

A message passing schedule for the sum-product algorithm in a factor graph F(5, Q)
is a sequence L = {Lg, L1,...}, where L; C (S x Q)U (Q x S) is a set of edges, now
considered to be directed, over which messages pass at time ¢. If (v,w) € L;, then,
according to the schedule I, node v sends a message to node w at time 1.

Obviously a wide variety of message passing schedules are possible. For example, the
schedule in which L; = (S x Q)U(Q x S) for all ¢, is called the flooding schedule [22]. The
flooding schedule calls for a message to be passed on each edge in each direction at each
clock tick. If, for all 7, L; is a singleton, i.e., |L;| = 1, the resulting schedule—called a
serial schedule—calls for only one message (in the entire graph) to be passed during each
clock tick. Despite the generality of possible schedules, we can make a few observations.

We say that a vertex v has a message pending at an edge e if the message that v
can send on e is (potentially) different from the previous message sent on e. For example,
variable nodes initially have no messages pending, since they would initially only send a
unit message, and this is exactly what is initially assumed to be sent. Function nodes, on
the other hand, can send a description of the local function (appropriately summarized)
on any edge. In general this summary is not a unit function, and hence, before any
messages have been passed, function nodes have messages pending on each incident edge.

When a message is received at a node, this will in general cause a change in the values
of the messages to be sent on all other edges incident on that node. Hence the receipt
of a message on an edge e at a node v causes v to have a message pending on all edges
incident on v, other than e. Of course, the receipt of a message at a leaf node creates no
messages pending, since there are no edges other than e. Thus leaf nodes absorb pending
messages, whereas non-leaf nodes distribute pending messages.

Only pending messages need to be sent at any clock tick since, by definition, only
pending messages have the potential to be different from the previous message sent on a
given edge. However, it is not necessary for every pending message to be sent at a given
time. We call a message-passing schedule nowhere idle if at least one pending message is
sent at each clock tick.

The flow of pending messages in any given schedule can be visualized using diagrams
like those shown in Fig. 16, in which a pending message is shown as a dot near the given
edge. The transmission of a message is indicated by attaching an arrow to the dot. The
flow of time is also indicated, with messages sent at non-negative integer times t.

Fig. 16 shows two possible message-passing schedules for the same factor graph. Only
pending messages are shown. In Fig. 16(a), the flooding schedule (in which all pending
messages are sent during each clock tick) is shown, while in Fig. 16(b), a two-way schedule,
defined as a schedule in which exactly one message passes in each direction over a given
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edge, is shown. Explicitly, the schedule in L in Fig. 16(b) is given by L = {Lo, L1, L2},

where

Lo = {(fi,23), (f2s23), ([3,23)},
L, = {($3,f1)7($37f2)7($37f3)}7

LZ = {(fhxl)a(fth)};
where these labels are shown in Fig. 16(c).

T

“ b ZW:\;{//
e

, 7\

VAR

() (d)

Figure 16: Two message passing schedules for the factor factor graph (c): in (a), the flood-
ing schedule for pending messages is shown; in (b) a two-way schedule is shown. In (d) a
computation trellis for schedule (b) is shown.

O

A given schedule L for a factor graph [’ can also be visualized via a computation
trellis, like the one shown in Fig. 16(d). Here, the trellis vertices V' at each depth corre-
spond to the vertices of the factor graph. The edges in the ith trellis section are precisely
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LiU{(v,v):v € V}, and are considered to be directed from left to right. In the ith trellis
section, the left vertices are considered to be at depth ¢ and the right vertices at depth

i+ 1.

Because leaf nodes absorb pending messages, if the sum-product algorithm uses a
nowhere idle schedule in a finite tree, then it will eventually arrive at a state in which
there are no nodes with messages pending. However, this does not happen in a graph
with cycles. For example, Fig. 17 shows the flow of messages for the flooding schedule in
a factor graph with a single cycle. Since the state of pending message in the graph the
same at time 07, 27, 47, etc., it is clear that the algorithm never terminates in a situation
in which there are no messages pending.

In fact, in any graph with a cycle, no message-passing schedule will result in trans-
mission of all pending messages, since transmission of a message on any edge of the cycle
will eventually cause that message to reach the originating node, triggering that node to
send another message on the same edge, and so on indefinitely.

In practice, all infinite schedules are rendered finite by truncation. The sum-product
algorithm terminates, for a finite schedule, by computing, for each 7, (or, perhaps, for ¢ in
a selected subset of S) the product of the messages received at variable node z;. If x; has
no messages pending, this computation is equivalent to the product of the messages sent
and received on any single edge incident on z;. As we shall see, when F' is a finite tree,
and L is a GFB schedule, the terminating computation at z; yields the marginal function

9(Xs) | .

Figure 17: The flooding schedule for a factor graph with a single cycle.

4.4 The Sum-Product Algorithm in a Finite Tree
4.4.1 The Articulation Principle

Let us assume now that I is a finite tree. As discussed in Section 1, the graph obtained
from F by cutting any edge {v,w} is the union of two components, one denoted F,_,,
(containing v, but not w) and the other denoted F,,, (containing w but not v). Intu-
itively, in the operation of the sum-product algorithm, all information about the local
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functions in F,_, must flow (from v to w) over the edge {v,w}, and similarly in the op-
posite direction. Of course, since we will in general be interested in function summaries,
the information about F,_,, sent from v to w can in general be summarized for z, ., and
the variables involved in F,_.,,.

We refer to this intuitive idea as the articulation principle: the message fi,—s,, sent
from v to w must articulate (i.e., encapsulate or summarize) for the variables attached to
F,_., the product of the local functions in F,,_,. Formally, we would like to ensure that

Hy—w = ( II fELXE)) ¢<Xbaw7

EeQuv

where (), is the set of function nodes in F,_,, and X,_,,, is the set containing z(, .,
and the variables of F,_,,,, i.e.,

XU—)w = U XE
EeQusw

The articulation principle is closely related to the notion of “state” or “sufficient statistic:”
all that needs to be known about about the product of the functions on one side of the
cut by the processors on the other side of the cut is captured (articulated) in the message
sent across the cut.

Our first observation, when F' is a tree, is that the set of variables that appear as
arguments in the functions on one side of the cut and the set of variables that appear as
arguments in the functions on the other side of the cut only have z, ,; in common, i.e.,

Xv—)w N Xw—)v = T{v,w}-
From (16) it follows that

( H fE(XE)) b X = ( H fE(XE)> il’{u,w}.

EEQw—)v EEQU}—H)

Hence, the message passed from v to w needs only to be a function of z(, ., and we can
write the articulation principle for trees as

Pomw(T(uwy) = ( II fE(XE)> b Ty (21)

E€Qu—v

4.4.2 Generalized Forward /Backward Schedules

We now present a family of schedules for trees called generalized forward /backward (GFB)
schedules that will cause exactly one message to be passed in each direction along every
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edge of F'. We shall prove that each message satisfies the articulation principle (21). A
complexity analysis for the GFB schedules is given in Appendix B, for the special case in
which all alphabets are finite and the summary operator is defined in terms of a binary
operation.

Of course, the basic update equations (19) and (20) will be followed, but we add the
proviso that a node v may send a message on an edge e only if it has received messages
on all other edges incident on v. Clearly, if d(v) = d, v can send a message once it has
received at least d — 1 messages. We refer to this as the all-but-one rule.

According to the all-but-one rule, a leaf node (and only a leaf node) can send a
message initially, and hence the GFB schedules begin at the leaf nodes. If v is a leaf
variable node, the message sent is the unit function, while if v is a leaf function node, the
message sent is (a description of) the function v(X, ). More formally,

initialization: (at each leaf variable node = and each leaf function node f)

tisn(r)(Xny) = f(Xup))- (22)

Suppose, after a message is sent from a leaf node v, that v (and the edge incident
on v) is deleted from F, resulting in a graph F’. As we observed in Section 1, F’ is still
a tree. Furthermore, any leaf node in F’ is in a position to send a message, since it will
have received messages on all but one edge. Thus we can choose one of the leaf nodes
in F', compute the message it should send on its outgoing edge, send the message, and
delete the node and its edge from F’, to form a new graph F”, and so on. Two basic
invariant properties of the sequence of graphs constructed in this way are: (1) leaf nodes
are always in a position to send a message, and (2) no messages have been sent on any
edge. Clearly this process can continue until just a single node remains. Since at each
stage the graph is a tree of more than one node, there are always at least two leaf nodes
in a position to send a message, so this process will not stall.

At the point when just a single node v remains, a message will have passed in one
direction over each edge in the original graph F. Furthermore, v will have received
messages on all of its edges. We now re-construct F' starting at v. We can choose any
neighbor w of v (in F), and adjoin v and the edge {v,w} to form a new graph that we
(again) call F’, and send a message from v to w. At this point, both v and w will have
received messages on all of their edges. We then adjoin any neighbor of v and w (and the
corresponding edge) to form the graph F”, sending a message to the newly added vertex.
This vertex, too, will then have received messages on all of its edges. Continuing in this
manner, we can always adjoin a neighboring node to the graph until, finally, all of the
nodes of F' have been added. Two basic invariant properties of this sequence of graphs
are: (1) every node will have received message on all of its edges, and (2) exactly two
messages—one in either direction—will have been sent on every edge. Of course these
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properties will also be true of the last graph in the sequence, namely F' itself.

The algorithm terminates, once F' has been regenerated, by computing, for each 1,
(or, perhaps, for ¢ in a selected subset of S) the product of the messages received at
variable node z;, or equivalently, the product of the messages sent and received on any
single edge incident on z;. More formally, we have

termination:
9 Xs)be = ][I wroele)
fen(z)
= (e (2) (g al@)) for any f € (). (23)

Note that, since F' is finite, this algorithm terminates in a finite number of steps.
Below, we will prove the correctness of the equality (23). However, first we must show
that the messages passed during the operation of a GFB schedule satisfy the articulation
principle (21). This is expressed in our main theorem.

Theorem 3 If F' is a finile tree and and the sum-product algorithm follows a generalized
forward/backward schedule in F', then all messages satisfy the articulation principle, i.e,.
for neighbors v and w in F,

,uv—ﬂﬂ(x{v,w}) = fw—w(Xw—)v) i T{v,w}s (24)

where fuu(Xwsy) s the product of the local functions in F,_,.

Proof: We proceed by induction on the order in which messages are sent in the sum-
product algorithm. From (22), statement (24) is clearly true whenever v is a leaf node. If
we can show that (24) is true for all outgoing messages whenever it is true for incoming
messages at a node, then it will follow by induction that (24) is true for all messages.
Designate {v,w} as the outgoing edge at v and suppose that the equivalent of (24) is
satisfied for all incoming messages at v, i.e.,

(vu € n(U) \ w) ,uu—w('r{u,u}) = fv—)u(XU—m) i Lluw}-

If v is a variable node, z,,} = v. For distinct uy,uy € n(v), Xomu, N Xogyu, = {v};
hence, from Lemma 1, we obtain

,uu—m(v) = H (fv—)u(Xv—m)iv)

uen(v)\w

= H fv—m(Xu—m) if v

uen(v)\w
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as desired.

If v is a local function node, then for each u € n(v)\w, x {3 = u, and, by assumption,
the message fiy—, 18 fomsu(Xumu) b u, unless u is a leaf node, in which case f,u(Xygu) =
fosu(u) = 1. Now, applying the axioms defining the summary operator and Lemma 1,
we write

fw—)’U(X’LU—H/) »l/ w = U(Xn(v)) H fv—)u (XU—>u) »L w
u€n(v)\{w}

9 (0¥ [T Foal X)) b )] L
D foXu) (T[] el Xm)) ()] Lo
D To(Xu) - [T FrsuXos) Lnw))] L
D oK) - [T (Xam) )
2 [oX) T tn0] 40

9 (w),

In all cases, the product is over u € n(v) \ {w} as noted explicitly in equality (a), which
follows from the definition of f,_,(Xu—y). Equality (b) follows from Axiom 1, since
{w} C n(v), and (c) follows from Axiom 2. Since, for distinct u; and uy in n(v) \ {w},
Xy, and Xy, are disjoint, we get (d) from Axiom 3. Then (e) follows since X, N
n(v) = {u}, while (f) follows from (24) by assumption, and (g) follows by definition. In
other words, the message sent from v to w is the required summary. I

From this theorem and from Lemma 1, we obtain a proof of the correctness of the
termination condition (23). We express this as a corollary.

Corollary 1 Let F be a factor graph for a function g(Xs), and suppose F is a finite
tree. Let x be any variable node of F, and, for any f € n(x), let pso.(x) denote the
message passed from f to x during the operation of the sum-product algorithm following
a generalized forward/backward schedule. Then

9 Xs)ba= ] msele).

fen(z)

Proof: We write

g Xs) b= ] foniXanp) | Lo =[] (fonsXanp) L) = [] msmel2).

fen(z) fen(z) fen(z)
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The first equality follows from the fact that g(Xg) can be written as the product of the
local functions contained in the disjoint subtrees obtained by removing node z from F.
The second equality follows from Lemma 1 (since for distinct f; and f; in n(z), we have
Xooy N Xosys, = {2}) and the third equality follows from Theorem 3. 1

4.4.3 An Example (continued)

Let us continue now the example of Section 1.3, which corresponds to the factor graph
of Fig. 1. We use an abbreviated notation, writing, e.g., ABC for the product f4fgfc of
local functions.

Applying the GFB schedule, we pass messages as shown in Fig. 18. At each node,
the sum-product rule is followed, i.e., the product of local functions is summarized for the
variable associated with the given edge. Observe that the product of the messages passed
in the two directions along an edge contain all of the factors of the global function. This
observation gives us the termination rule: for each z;, we compute the product of the
messages passed in the two directions on any edge incident on ;.

Figure 18: Messages passed during the generalized forward /backward schedule.

4.4.4 Forests

Of course, the operation of the sum-product algorithm in a tree generalizes trivially to
the case when F'is a “forest,” i.e., a finite collection of components, each of which is a
tree. Suppose, in this case, that F' has K components, so that g(Xs) may be written as

9(Xs) = [ F+(Xcr)
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where C; is an index set for the variables in the kth component with C,NC; = 0 if k # 1,
and fi is the product of local functions in the kth component. To compute g(Xs) | ;
for some 7 € S, we observe that if 1 ¢ C} then

T Xe,) Lz = fu(Xe,) 1 Xo.

Since by Axiom 3, the summary of the product of functions with disjoint arguments is the
product of the summaries, we must simply run the sum-product algorithm separately in
each component, and produce an overall summary p; = fi(X¢, ) | Xy for each component.
(This could be done by summarizing the marginal function f3(X¢,) | z; for any ¢ € Cy.)
Then

K
9(Xs) L= (fi(Xe,) L i) - [ ps
ey
where j is the index of the component containing x;. Thus the sum-product algorithm can

be applied to compute exact marginal functions in any finite factor graph not containing
cycles.

4.5 Message Semantics under General Schedules

We have seen that when a GFB schedule is followed in a tree, each message passed by
the sum-product algorithm has a clear meaning, expressed by the articulation principle.
In this subsection, we consider message semantics under more general schedules.

As in Section 4.4, the behavior of the sum-product algorithm in a finite tree is easy
to analyze, even with an arbitrary schedule. Let F' be a factor graph that is a finite tree,
let v and w be two arbitrary nodes in F, and let {vy,v2}, {vg,v3}, ..., {vr—1,vr} (with
v1 = v and v, = w) denote the sequence of distinct edges in the unique path from v to w.
Although nodes receive messages only from their immediate neighbors, we will say that
node v influences node w at time ¢y, if there is a sequence of timest; < {5 < -+ <t < 1y,
such that a pending message was sent from node v; to v,y at time ¢;. In this sequence, we
say that the first message in the sequence, sent at time ¢y, reaches w at time ¢;,. Note that
if w has received a message from v, it has necessarily received a message from all nodes
on the path from v to w. Thus, if 7%(¢) denotes the set of nodes which have influenced
w at time ¢ or earlier, then 7% () induces a subtree of F.

Let v be a neighbor of w in T"(t) and let T\, (¢) denote the component of T.,(t)
containing v when the edge {v,w} is cut. By the “most recent message” sent from v to w
at time ¢, we mean the message sent from node v to node w at time i, where ¢ is as large

as possible, but satisfies + < ¢t. The analogy of Theorem 3 is the following.
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Theorem 4 [f v and w are neighbors in T™(t) then the most recent message sent from
v to w at time t in the operation of the sum-product algorithm is equal to the product of

the local functions in T}",

(1), summarized for xg, ..

Proof Sketch: At each node in T™(t), each processor will have followed the articu-
lation principle in 7"(¢). Thus, using arguments identical to those used in the proof of
Theorem 3, we obtain the desired result. The details are omitted. I

As already noted, in a finite tree, every nowhere idle schedule will eventually arrive
at a time in which there are no nodes with messages pending. At this time, call it time
L, every node will have received messages sent from every other node, and, in particular,
the subgraph T, (t;) will be equal to F,,_,,. Theorem 4 then implies that the algorithm
will arrive at the same result as the sum-product algorithm with the GFB schedule of

Section 4.4. We express this result as a corollary to Theorem 4.

Corollary 2 In a factor graph F that is a finite tree, every nowhere idle message-passing
schedule for the sum-product algorithm will eventually result in a state in which no mes-
sages are pending, al which point the algorithm can be terminated to arrive al exactly the
same resull as obtained from a GFB schedule.

In graphs with cycles, with one small exception (noted below), we know of no gen-
eralization of Theorems 3 and 4. The difficulty is that nodes involved in a cycle can
influence themselves, at which point the clear message semantics involving the articula-
tion principle no longer apply. Let us define as corrupted any node that influences itself
along a path of length greater than two. (It is impossible for a node v to influence itself
along a path of length two, since if v sends a message to w, the reply received from w
contains no component of the message from v.) Let F”, (t) denote the set of nodes that
have influenced node v in the latest message passed from node v to node w at time ¢. By
definition, each node u in F, (1) influences w via some chain of messages along a path
from u to w (through v), and each such chain of messages originates at a definite time.
Let Tyoyw—o(t) denote the largest time at which a message sent from u reaches v through
w no later than time 7.

Our exception is the following. Provided that every node win £, () is not corrupted
at time 7y_u—,({)—which necessarily implies that F!, () is a tree—the articulation
principle still applies, and the latest message sent from v to w is equal to the product of

the local functions in F_, (%), summarized for zy, .. Thus, until “cycles close,” message

w—rv
semantics remain clear, and are expressed by the articulation principle.

In graphs with cycles, the basic sum-product algorithm does not compute exact
marginals. Although we will discuss some methods for handling these difficulties in Sec-
tion 6, for some applications (e.g., decoding low-density parity-check codes and turbo
codes) a successful strategy is simply to ignore the cycles, and proceed with some nowhere
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idle message-passing schedule, terminating the computation at some convenient point. It
is difficult to analyze the behavior of iterative algorithms based on this approach, yet their
excellent performance (confirmed by extensive simulation results) has led to an explosion
of interest in such methods in the coding theory community.

5 Applications of the Sum-Product Algorithm

We now apply the sum-product algorithm to many of the factor graphs of Section 2. Our
main results will be the derivation of a variety of well known algorithms as special cases
of the sum-product algorithm.

5.1 The Forward/Backward Algorithm

The forward/backward algorithm, sometimes referred to in coding theory as the BCJR
algorithm [4] or “MAP” algorithm, is an application of the sum-product algorithm to the
hidden Markov model of Example 6, shown in Fig. 9(d), or to the trellises of examples
Examples 3 and 4 (Figs. 6 and 7) in which certain variables are observed at the output of
a memoryless channel. The local functions represent (real-valued) conditional probability
distributions, and the summary operator is real addition.

)

©
©

(=)
&/
&)
®

Figure 19: The factor graph on which the forward/backward algorithm operates: the s; are
state variables, the u; are input variables, the x; are output variables, and each y; is the
observation at the output of a memoryless channel with z; at the input.

The factor graph of Fig. 19 represents the joint probability distribution for random
vectors u, s, X, and y. Such a factor graph would arise, for example, in a terminated
trellis code with time-z inputs u;, states s;, transmitted symbols x; and received symbols
yvi. Given the observation of the y, we would like to find, for each ¢, p(u;|y), the a
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posteriori probabilities (APPs) for the input symbols. If we take ordinary real addition
as a sumimary operator, then, for each 1,

p(uily) = p(u,s,x[y) | us.

Since the factor graph of Fig. 19 is cycle-free, these quantities can be computed using the
sum-product algorithm.

Figure 20: The typical forward backward message-passing schedule: (a) initialization; (b)—(d)
the forward recursion; (e)—(g) the backward recursion; (h) termination.

Fig. 20 shows a typical schedule for the sum-product algorithm in the trellis case,
for the factor graph representing the conditional probability mass function for u, s, and
x, given a fixed y. Since all variable nodes have degree less than three, as described
in Section B, no computation is performed at the variable nodes. Note that, except for
initialization and termination steps, the main schedule involves a chain of messages passing
left-to-right (or forward) and another chain passing right-to-left (or backward) in the
factor graph. For this reason, the algorithm is often referred to as the forward /backward
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algorithm. In fact, the forward and backward message chains do not interact, so their
computation could occur in parallel.

§(u;) T
B(s:) B(sit1)

O

a(si) T a(siy1)

v(5)

Figure 21: A detailed view of the messages passed during the operation of the for-
ward /backward algorithm.

In the literature on the forward/backward algorithm (e.g., [4]), the messages sent
from the channel input variables are referred to as ‘y’s, the messages sent from state
variables in the forward step are referred to as ‘a’s, and the messages sent from state
variables in the backward step are referred to as ‘3’s. We refer to the conditional APP
for u; given y as §(u;).

Fig. 21(a) gives a detailed view of these messages for a single trellis section. The
local function in this figure represents the function [(s;, u;, ®;, s;41) € T;] that indicates
the valid (state, input, output, next state) 4-tuples in the ith trellis section. Specializing
the general update equation (20) to this case, we find:

OZ(SZ'-H) = ZZZ Szvunxw 2+1)€T] ( ) ( )
B(s;) = ZZZ Siy Wiy Tiy Sip1) € T B(si41) ()

Si41 Uy

) = 35S (ot seer) € Bla(s)(seea)r (00

S Si41 Ty

In each of these sums, the summand is zero except for combinations of s;, u;, x; and s;11
representing a valid trellis edge; in effect, these sums can be viewed as being defined over
valid trellis edges. For each edge e = (s;, u;, 24, Si41) we let a(e) = a(s;), B(e) = B(sit1)
and ~v(e) = y(x;). Denoting by F;(s) the set of edges incident on a state s in the ith
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trellis section, the a and (3 update equations can be re-written as

a(sisr) = Y ale)yle) (25)

e€EFi(sit1)

Blsi) = Y Ble)e).

e€E;(s;)

The basic operation in the forward and backward recursion is, therefore, one of “multiply
and accumulate.”

In light of Theorem 3 and the articulation principle, a(s;) is the conditional proba-
bility mass function for s; given the observation of the “past” yo,...,y;_1; i.e., for each
state s; € S;, a(s;) is the conditional probability that the transmitted sequence passed
through state s; given observation of the past. Similarly, 3(s;11) is the conditional prob-
ability mass function for s;;; given the observation of the “future” y,i1,¥it2,..., le.,
the conditional probability that the transmitted sequence passed through state s;1;. The
probability that the transmitted sequence took a particular edge e = (s;, z;, si41) € T; is

given by a(s;)y(z;)B(sit1) = ale)y(e)B(e).

Note that if we were interested in the APPs for the s vector, or for the x vector,
these could also be computed by the forward/backward algorithm. See [33] for a tutorial
on some of the applications of the forward/backward algorithm to applications in signal
processing.

5.2 The Min-Sum Semiring and the Viterbi Algorithm

Suppose now, rather than being interested in the APPs for the individual symbols, we are
interested in determining which valid codeword has largest APP. When all codeword are
a priori equally likely, this amounts to maximum-likelihood sequence detection (MLSD).

One way to accomplish MLSD would be to operate the sum-product algorithm in
the “max-product” semiring, replacing real summation with the “max” operator. For
non-negative real-valued quantities x, y, and z,

z(max(y, z)) = max(zy, rz),

so the distributive law is satisfied. Denoting by | the summary operator so obtained,
and denoting by p(x|y) the joint conditional probability mass function of the codeword
symbols given the channel output y, the quantity

p(x]y) I Xo (26)

denotes the APP of the most likely sequence. Of course, we will be interested not only
in determining this probability, but also in finding a valid codeword x that achieves this
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probability. Since all trellises that we consider are one-to-one, i.e., there is a unique state
sequence s corresponding to each codeword x, we have

p(x]y) = p(x;sly)
so we can substitute the latter quantity in (26).

In practice, MLSD is most often carried out in the negative log-likelihood domain.
Here, multiplicative decompositions become additive, but the structure of the underlying
factor graph is unaffected. The ‘max’ operation becomes a ‘min’ operation, so that we
deal with the “min-sum” semiring. For real z, y, z,

z + min(y, z) = min(z + y, x + 2)

so the distributive law is satisfied. Let f(x,s|ly) = —alnp(x,s|y) + b where a and b
are any convenient constants with @ > 0, and let | denote the summary operator in
the min-sum semiring. We are interested not only in determining f(x,s|y) | Xy, which
can be achieved using the sum-product algorithm—here called the min-sum algorithm—
whenever the factor graph is cycle free, but in determining a pair (x,s) that achieves this
quantity.

Let us consider the special case of a trellis of length L (e.g., the factor graph of Fig. 19
shows L = 4) but ignoring the input symbols u. Since we are interested in the overall
summary f(x,s|y) | Xy we can compute f(x,s|y) | s; for any s; and then minimize this
quantity over all values for s;. In particular, suppose that S;, = {0}, i.e., that there is
only a single terminating state. In this case, f(x,s|y) | s = f(x,s]y) } Xy. The former
quantity can be computed by a forward recursion only, i.e., by applying steps (a)-(d) in
the schedule shown in Fig. 20.

For a trellis edge € = (s;,2;,8,41) in the ith trellis section, let a(e) = a(s;) and
v(e) = 7v(si), where the as and ~s are the quantities (called state metrics and branch
metrics, respectively) that correspond to similar quantities computed in the forward step
of the forward/backward algorithm. The basic update equation corresponding to (25)
then translates to

a(siy1) = _min  (a(e) +7(¢)), (27)
e€F;(siy1)
so that the basic operation is one of “add, compare, and select” If y(e) is interpreted as the
“cost” of traversing an edge e, this procedure computes the minimum cost of traversing
from the initial state sy to the final state s;, and is an example of forward dynamic
programming.

Since we wish not only to compute the maximum likelihood value, but also the
sequence that achieves this maximum, we need some memory of the decisions made as
the as are updated. This can be done in a variety of ways, for example by adjoining to
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the as a “survivor string” m that records the sequence of output symbols on the best
path from sg to each s;. Initially m(so) = €, the empty string. Survivor strings strings
are updated as follows: if e* = (s}, 2}, s;+1) is an edge that achieves the minimum of (27),
then

m(si1) = m(s])]e
where | denotes the string concatenation operator. At termination, m(sy) is a sequence
of output symbols (i.e., a codeword) corresponding to a sequence achieving the maximum
likelihood value. Of course, if we wish, m could be used to store the corresponding input
sequence. The unidirectional min-sum algorithm applied to a trellis and modified to have
some memory of survivor sequences is usually referred to as a Viterbi algorithm.

5.3 Iterative Decoding of Turbo-like Codes

One of the most exciting applications of the sum-product algorithm is in the iterative
decoding of near-capacity achieving codes such as turbo codes and low-density parity-
check codes. Extensive simulation results (see, e.g., [7, 25, 26]) show that sum-product
based decoding algorithms with very long codes can astonishing performance (within a
fraction of a decibel of the Shannon limit in some cases), even though the underlying
factor graph has cycles. Descriptions of the way in which the sum-product algorithm is
applied to a variety of “compound codes” are given in [22]. In this section, we restrict
ourselves to two examples: turbo codes [7] and low-density parity-check codes [14].

Turbo Codes

A “turbo code” or parallel concatenated convolutional code has the encoder structure
shown in Fig. 22(a). A block u of data to be transmitted enters the systematic en-
coder which produces u, and two parity-check streams p and q at its output. The first
parity-check stream p is generated via a standard recursive convolutional encoder; viewed
together, u and p would form the output of a standard rate 1/2 convolutional code. The
innovation in the structure of the turbo code is the manner in which the second parity-
check stream q is generated. This stream is generated by applying a permutation 7 to
the input stream, and applying the permuted stream to a second convolutional encoder.
All output streams u, p and q are transmitted over the channel. Both constituent con-
volutional encoders are typically terminated in a known ending state; the corresponding
symbols (to, 1, ps, g5 in Fig. 22(b)) are also transmitted over the channel.

A factor graph representation for a (very) short turbo code is shown in Fig. 22(b).
Included in the figure are the state variables for the two constituent encoders, as well as
a terminating trellis section in which no data is absorbed, but outputs are generated.
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Figure 22: Turbo code: (a) encoder block diagram, (b) factor graph.

m™ua

[terative decoding of turbo codes is usually accomplished via a message passing
schedule that involves a forward/backward computation over the portion of the graph
representing one constituent code, followed by propagation of messages between encoders
(resulting in the so-called extrinsic information in the turbo-coding literature). This is
then followed by another forward/backward computation over the other constituent code,
and propagation of messages back to the first encoder. This schedule of messages is
illustrated in [22, Fig. 10].

Low-density Parity-check Codes

Low-density parity-check (LDPC) codes were introduced by Gallager [14] in the early
1960s. LDPC codes are defined in terms of a regular bipartite graph. In a (j,&) LDPC
code, left nodes, representing codeword symbols, all have degree j, while right nodes,
representing checks, all have degree k. For example, Fig. 23 illustrates the factor graph
for a short (2,4) low-density parity-check code. The check enforces the condition that the
adjacent symbols should have even overall parity, much as in Example 1.

Figure 23: A factor graph for a low-density parity-check code.

Low-density parity-check codes, like turbo codes, are very effectively decoded using
the sum-product algorithm; for example MacKay and Neal report excellent performance
results approaching that of turbo codes using what amounts to a flooding schedule [25, 26].

Appendix C gives some specific simplications for binary codes that are very useful in
practical implementations of the min-sum and sum-product algorithms.
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5.4 Belief Propagation in Bayesian Networks

Recall from Example 8 that a Bayesian network is defined in terms of a directed acyclic
graph, in which each vertex represents a variable, and which represents a joint probability
distribution that factors as in (12). Bayesian networks are widely used in a variety of
applications in artificial intelligence and expert systems, and an extensive literature on
them exists. See [31, 20] for textbook treatments.

To convert a Bayesian network into a factor graph is straightforward; we introduce
a function node for each factor p(v;|a(v;)) in (12) and draw edges from this node to v;
and its parents a(v;). Often, we will denote the child v; by drawing an arrow on the edge
from the function node to v;. An example conversion from a Bayesian network to a factor
graph is shown in Fig. 10(c).

It turns out that Pearl’s belief propagation algorithm [31] operating on a Bayesian
network is equivalent to the sum-product algorithm operating on the corresponding factor
graph. Equations similar to Pearl’s belief updating and bottom-up/top-down propagation
rules [31, pp. 182-183] can easily be derived from the general sum-product algorithm
update equations (19) and (20) as follows. Again, as in the forward/backward example,
local functions represent conditional probability distributions, and the summary operator
is real addition.

Figure 24: Messages sent in belief propagation.

In belief propagation, messages are sent between “variable nodes,” corresponding to
the dashed ellipses for the particular Bayesian network shown in Fig. 24. If, in a Bayesian
network, an edge is directed from vertex p to vertex ¢ then p is a parent of ¢ and ¢ is a
child of p. Messages sent among between variables are always functions of the parent p.
In [31], a message sent from p to ¢ is denoted m.(p), while a message sent from ¢ to p is
denoted as A.(p), as shown in Fig. 24 for the specific Bayesian network of Fig. 10(c).

Consider the central variable, z3 in Fig. 24. Clearly the message sent upwards by
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the sum-product algorithm to the local function f contained in the ellipse is, from (19),
given by the product of the incoming A messages, i.e.,

fas—5(T3) = Auy(23) sy (23).

The message sent from f to z; is, according to (20), the product of f with the other
messages received at f summarized for z;. Note that that this local function is the
conditional probability mass function f(zs|z1,z2), hence

Aog(21) = (Auy(3) Aus (w3) (@3] 21, T2) 70y (22)) | 21
Z)\z4($3)/\z5($3)Zf($3|$17$2)7rz3($2)-

Similarly, the message m,,(x3) sent from z3 to the ellipse containing x4 is given by

Ten(@3) = Apy(@3) ((f(@s|rr, v2)me, (21)m0, (22)) | 23)
= /\1‘5 ZZf$3|$17$2 Wrs(xl)ﬁts(l'?)

In general, let us denote the set of parents of a variables z by a(z), and the set of children
of x by d(z). We will have, for every a € a(z),

A(a) = | T Male)f(ala()) m(p) | ba (28)

ded(z) p€a(z)\{a}

and, for every d € d(z),

r(@)= I M) | fela@) ] ml@ | b (29)

ced(z)\{d} a€al(z)

The termination condition for cycle-free graphs, called the “belief update” equation in
[31], is given by the product of the messages received by z in the factor graph:

BEL(z H Aa( H T (a) (30)

ded(z a€a(z

Pearl also introduces a scale factor in (29) and (30) so that the resulting messages properly
represent probability mass functions. The relative complexity of (28)-(30) compared
with the simplicity of the sum-product update rule given in Section 4 provides a strong
pedagogical incentive for the introduction of factor graphs.

Pearl also presents an algorithm called “belief revision” in [31]; in our terms, belief
revision is the “max-product” version of the sum-product algorithm, applied to the factor
graph corresponding to a Bayesian network. The details of this straightforward extension
are omitted.
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5.5 Kalman Filtering

In this section, we derive the Kalman filter [3] as the optimal predictor given by the sum-
product algorithm in a factor graph for a time-varying discrete-time linear dynamical sys-
tem (cf., (8)). The input to the system consists of a sequence of unknown K-dimensional
real-valued input column vectors u;, 7 = 1,2,.... A sequence of hidden N-dimensional
real-valued state vectors z;, 7 = 1,2,... are meant to represent the internal dynamics
of the system. Input vector u; and state vector z; combine linearly to produce the next
state vector:

Tiy1 = Ajzj + Bju;. (31)

Aj is the N x N state transition matrix at time j and B; is an N x K matrix that maps the
input into the state space. The input vectors may also be interpreted as state transition
noise vectors.

The output of the system is a sequence of M-dimensional real-valued vectors y;,

J = 1,2,.... The output y; is a linear function of the state vector z; plus a linear
function of an L-dimensional noise vector, w;:
y; = Cizj + Djw;. (32)

C; is the M x N output matrix at time j and D; is an N X L matrix that maps the
noise process into the output space. Notice that even though the output space may be
high-dimensional, the output noise may be low-dimensional, . < N. In this paper, we
consider the case where the A, B, ' and D matrices are given.

Assume that the input vectors and the output noise vectors are all independent and
Gaussian with zero mean. Let the K x K covariance matrix of u; be ¢;:

¢; = COV(u;) = B[ (u; — E[u;]) (u; — Bluy])'] = Elu;u],

W

where indicates vector transpose. Let the L x L covariance matrix of w; be ;. Then,

we can define the following conditional covariance matrices:

B; = COV(zp1lz;) = E[(Bju;)(Bju;)| = B;; B,

§; = COV(y;lz;) = E[(Djw;)(Djw;)) = Djt; D}, (33)
where E[z;41]|z;] = Ajz; and Ely;|z;] = C;x; were used to simplify the expressions. The
state sequence is initialized by setting xo = 0, so that 1 = Byug, a Gaussian vector

with zero mean and covariance (3y. Since linear combinations of jointly Gaussian random
variables are Gaussian, {z;} and {y;} are jointly Gaussian.

This signal structure can be written in terms of conditional probability densities.

Letting
1 1

N(z,m,%) = W exp[—§($ —m)'’Y "z — m)]
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be the normal distribution for # with mean m and covariance matrix ¥, we have

p(@jsilz;) = N(2j, Ajzg, B)), (34)
p(yilz;) = Ny;, Ciz;, 65).

From the description of the linear dynamical system given above, it is clear that given

xj_1, x; is independent of zq,... ;2,0 and yq,... ,y;_1:
plxi|To, . .y xj—1, Y1y Y1) = plaj|z-1).
Also, given z;, y; is independent of zy,... ;2,1 and yq,... ,y;_1:
pyjlzos sz yns o yi—1) = p(yjle;)-

Using the chain rule of probability, it follows that the joint density for observations up to
time ¢t — 1 and states up to time ¢ can be written

p(T1, e T Yty Yim)

= p(xe|To, . oo Tem1, Y1y e e Yio1)
t—1
' Hp(‘rj|$07 e T Yt Yi-)P(Ys]Tos T Y Y1)
7=1
t—1
= plzi|i1) Hp(fﬂfj—l)P(yﬂfj)-
7=1

The factor graph for this global probability density function is shown in Fig. 25. Note that
since z¢ is fixed to zero, p(x1|z¢) = p(z1) from (34). A factor graph for the cross-section
of this function at fixed yq,... ,y;—1 1s obtained by eliminating the y nodes from Fig. 25
and interpreting p(y;|z;) as a likelihood function of z; with parameter y;.

p(zi]o)  plazlzr)  plas|zs) p(we|zi—1)

P(yt—1|l’t—1)

Figure 25: A factor graph for the linear dynamical system model (31) and (32).
We consider the standard state observer problem, i.e., the problem of estimating the
next state xz; from the past observations yq,...,y,_1. The minimum mean squared error
prediction for x; is given by

E[$t|y17 S 7%—1],
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the conditional expected value of z; given the observed outputs. This conditional expec-
tation can be obtained from the conditional density p(z:|y1,...,y:-1). In fact, we really
need only compute a function of z, that is proportional to p(z|yi,... ,y:—1), assuming we
can later normalize the function. In this case, since all random variables are jointly Gaus-
sian, all normalizing factors can be computed from the covariance matrices and hence do
not need to be computed explicitly.

Since the factor graph is cycle-free, we can take integration as the summary operator
(as described in Section 3.3) and directly apply the sum-product algorithm to compute a
function proportional to

P(l’t|y17--- 7%—1) = p(ﬂfl,--- ,$t|y1,--- ,yt—1) 1z

We do not have any observations for & > ¢, so we need only propagate messages forward
along the chain.

Denote by f; the function node in the factor graph corresponding to p(z;|z;_1) and by
g; the function node corresponding to p(y;|x;). Since z¢ is fixed to zero, we take the first
variable-to-function message fi;,— 7, (7o) to be a delta-Dirac function at 0: pz—f (20) =

d(zo). From (20), it is evident that the first function-to-variable message pif, -z (1) is
thus

oo (1) = / Pl ]20) 10 1 (20) o
o

B / N (21, Aoz, Bo)(z0)dxo = N(21,0, Bo).

We now show how to compute the function-to-variable message iy, (zj41) at
time j 4 1 from the function-to-variable message 15, ., (z;) at time j. First, note from
(20) that the messages sent from the likelihood function nodes to the state nodes are
simply

Hay—e,(25) = gi(w;) = ply;la;) = N(y;, Cjzj, 65).
From (19), the message fis; .., (z;) sent from z; to f;41 is given by
Py 1y (T5) = 1550, () g2, (25) = gm0, ()N (Y5, Cjzj, 65).
From (20), the message fif,,, s, (zj41) sent from f; 1 to z;44 is given by
Hfjip1—zi4 ($j+1> = / p(‘rj-l-l |$j)MI]_>f]+l (‘Tj)d‘rj

Ty

= / N(zjpr, Aja, BN (s, Ciws, 65) g =, () d;. (35)
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Since the initial function-to-variable message (14, -z, (1) is a Gaussian and a convo-
lution of Gaussians gives a scaled Gaussian, all further function-to-variable messages will
be scaled Gaussians. Also, since the state variable at time ¢ in the factor graph has just
a single edge (see Fig. 25), from (23) we have

p(l't|y1, SR 7y7f—1) (&8 /’Lft_>(ft($t)'

So, the predicted mean and covariance of the next state given past observations are exactly
equal to the mean and covariance of the function-to-variable message at time ¢. These
two observations mean that we really only need keep track of the means and covariances
of the messages — scale factors can be ignored.

Let Z; and ¥; be the mean and covariance for the message fif, . (2;):
poyay(25) o< N (2,25, 55). (36)

From (35) and (36), we have
[ 1 =2 (Tjg1) X / N (41, Ajag, BN (y;, Ciaj, 6,)N (x5, &5, X )de;.

Clearly the solution to this integral can be written in closed form, since it is simply
a convolution of Gaussians. The first trick to simplifying the message is to rearrange
terms in the exponents of the Gaussians in the above product to complete the square
for ;. This will produce a normal distribution over z;, which will integrate to unity,
leaving a function of only z;41. Since we are only interested in finding the mean and
covariance of this message, we can ignore any normalization terms that are introduced
by the rearrangement. The second trick to simplifying the message is to complete the
square for z;4q so that the mean and covariance of the message become evident. These
two tricks produce the following message:

/”Lf]-l-l_}x]-l-l (x]‘}'l) &

J

[S7' + A3 A+ CL6T Oy

J

/ N (2 [B71 + ALBTA; + CLo7 O 8T + 2 571 A + w071

N (i[85 = BT AAST + A3B7TA; + Cj67 Ciy T ATBTT BT A,

J

(ST ALBTIA; 4 5T O TN ST g 4 Ty,

J

(67 = B A{ST + ALBTIA + CLTIC YT ALBTYTY) da

J

= N (i (87 = B AASTT + A5 A + O8O3y B A,
(ST ALBTTA; 4 CU5TIOH) ST 4 T ),
(67" = B AAST + ALBT A + CF7 Oy AT,

H)



The mean and covariance for this message can be simplified by applying the following
matrix inversion lemma:

(AT + VOV = A —AV(Q + VAV) VA,

for (2 4+ V'AV)~! nonsingular. Neophytes may be interested in this exercise, but if not,
rest assured that we and many others have done it. The simplified form of the message is

Pl (i) o N (200 [A; — 48,058, + C5;09) 7 055 + ;0767 ),
Bj + Aj[S; = Z,C5(8; + C;5;C5) 7 O35 A)).
Inserting the definitions for 3; and 4; given in (33), we find that the mean and covariance
of the message pif, | 4z,,,(7;41) can be expressed
B = Ajiy 4+ Ky — Cjij),
and
Sjs1 = BjdiBj + Aj[S; — B;05(Din; D + C55,;C7) 7 O 5,1 A7,
where
K; = A;3;CH D DY + C;;C0) 71

These updates are exactly equal to the updates used by Kalman filtering [3]. In particular,
K; is called the filter gain and y; — C;2; 1s called the innovation, and z; and 3, are the
estimated mean and covariance of z; given yy,... ,y;_1.

6 Factor Graph Transformations and Coping with
Cycles

In this section we describe a number of straightforward transformations that may be ap-
plied to a factor graph without changing its meaning. By applying these transformations,
it is sometimes possible to transform a factor graph with an inconvenient structure into
a more convenient form. For example, it is always possible to transform a factor graph
with cycles into a cycle-free factor graph, but at the expense of increasing the complexity
of the local functions and/or the messages that must be sent during the operation of the
sum-product algorithm. Nevertheless, such transformations can be quite useful, and we
apply them to derive a fast Fourier transform algorithm from the factor graph represent-
ing the DFT kernel. In [20, 24], similar general procedures are described for transforming
a graphical probability model into cycle-free form.
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6.1 Grouping Like Nodes, Multiplying by Unity

It is always possible to group two nodes of like type—i.e., both variable nodes or both
function nodes—without changing the global function being represented by a factor graph.
If v and w are the two nodes being grouped, simply delete v and w and any incident edges
from the factor graph, introduce a new node representing the pairing of v and w, and
connect this new node to nodes that were neighbors of v or w in the original graph.

When v and w are variables over alphabets A, and A,, respectively, by the “pairing
of v and w” we mean a new variable (v,w) over the alphabet A, x A,. Any func-
tion f that had, say, v as an argument in the original graph must be converted into an
equivalent function f’ that has (v,w) as an argument. This is accomplished simply by
applying the projection operator P, that maps (v,w) to v and writing f'((v,w),...) =
f(Py(v,w),...) = f(v,...). Note that f’ still has essentially the same set of arguments as
f;if w is not an argument of f, then f’ does not depend on w. Thus, grouping variables
does not increase the complexity of the local functions.

When v and w are local functions, by the pairing of v and w we mean the product of
the local functions. If X,y and X, are the arguments of v and w, then X, )un(w) is
the set of arguments of the product. Note that grouping functions does not increase the
complexity of the variables.

fa

B fc
fE
fo fr

(a)

Figure 26: Grouping transformations: (a) original factor graph fragment, (b) variable nodes
y and z grouped together, (c) function nodes f5, fc and fz grouped together.

Grouping nodes may eliminate cycles in the graph so that the sum-product algorithm
in the new graph is exact. For example, grouping the nodes associated with y and z in
the factor graph fragment of Fig. 26(a) and connecting the neighbors of both nodes to the
new grouped node, we obtain the factor graph fragment shown in Fig. 26(b). Notice that
the local function node fgr connecting y and z in the original factor graph appears with
just a single edge in the new factor graph. Also notice that there are two local functions
connecting z to (y, z).
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The local functions in the new factor graph retain their dependences from the old
factor graph. For example, although fp is connected to = and the pair of variables (y, z),
it does not actually depend on z. So, the global function for the new factor graph is

g( 7$7y727"') = fA( 7‘I)le(‘I?va)fé’(‘r?va)fb('" 7y72)f;5(y72)f1/7(y727"')
= - Sal @) fe(y) fo(e, 2) fol.. . y) fely, 2) fr(z, ... ),

which is identical to the global function for the old factor graph.

In Fig. 26(b), there is still one cycle; however, it can easily be removed by grouping
function nodes. In Fig. 26(c), we have grouped the local functions corresponding to fg,

f&and f:
fBC’E(vayaZ) = f]/3($7y;Z)fé’(xyl%Z)f;;(y’Z)-

The new global function is

9. 2y z,0) = o fale o) feos(n,y, 2) fp(e oy 2) Ry, 2, 00),
= fA( 7x)le(xayaz)fé’(xvyvz)fé(yaz)fb(‘" 7y72)f;7(y727"')7

which is identical to the original global function.

In this case, by grouping variable vertices and function vertices, we have removed the
cycles from the factor graph fragment. If the remainder of the graph is cycle-free, then
the sum-product algorithm can be used to compute exact marginals. Notice that the sizes
of the messages in this region of the graph have increased. For example, y and z have
alphabets of size |A,| and |A.|, respectively, and if functions are represented by a list of
their values, the length of the message passed from fp to (y,z) is equal to the product
A, A,

We will also allow the introduction of arbitrary factors of unity. Essentially, if con-
venient, for any set Xp of variables, we can multiply the global function ¢ by a factor of
unity, f(Xg) = 1, and introduce the corresponding function node and edges in the factor
graph for g.

6.2 Stretching Variable Nodes

In the operation of the sum-product algorithm, in the message passed on an edge {v,w},
local function products are summarized for the variable zy, ., associated with the edge.
Outside of those edges incident on a particular variable node z, any function dependency
on z is represented in summary form; i.e., = is marginalized out.

Here we will introduce a factor graph transformation that will extend the region in
the graph over which z is represented without being summarized. Let ny(z) denote the
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set of nodes that can be reached from x by a path of length two in F. Then ny(z) is a set
of variable nodes, and for any y € ny(z), we can pair z and y, i.e., replace y with the pair
(z,y), much as in a grouping transformation. The function nodes incident on y would
have to be modified as in a grouping transformation, but, as before, this modification
does not increase their complexity. We call this a “stretching” transformation, since we
imagine node = being “stretched” along the the path from z to y.

More generally, we will allow further arbitrary “stretching” of z. If B is a set of nodes
to which = has been stretched, we will allow x to be stretched to any element of ny(B), the
set of variable nodes reachable from any node of B by a path of length two. In “stretching”
x in this way, we retain the following basic property: the set of nodes to which x has been
paired (together with the connecting function nodes) induces a connected subgraph of the
factor graph. This connected subgraph generates a well defined set of edges over which =
is represented without being summarized in the operation of the sum-product algorithm.
Note that the global function is unaffected by this transformation.

Fig. 27(a) shows a factor graph, and Fig. 27(b) shows an equivalent factor graph in
which z; has been stretched to all variable nodes.

(@) (ts) Qe Gue G Gue)
(a) (b) ()

Figure 27: Stretching transformation: (a) original factor graph, (b) node z; is stretched to
T4 and x3, (c) the node representing x; alone is now redundant and can be removed.

When a single variable is stretched in a factor graph, since all variable nodes represent
distinct variables, the modified variables that result from a stretching transformation are
all distinct. However, if we permit more than one variable to be stretched, this may no
longer hold true. For example, in the Markov chain factor graph of Fig. 9(c), if both x;
and x4 are stretched to all variables, the result will be a factor graph with two vertices
representing the pair (z1,24). The meaning of such a peculiar “factor graph” remains
clear however, since the local functions and hence also the global function are essentially
unaffected by the stretching transformations. All that changes is the behavior of the
sum-product algorithm, since, in this example, neither z; nor x4 will ever be marginalized
out. Hence we will permit the appearance of multiple variable nodes for a single variable
whenever they arise as the result of a series of stretching transformations.

Fig. 27(b) illustrates an important motivation for introducing the stretching trans-
formation; it may be possible for an edge, or indeed a variable node, to become redundant.
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Let f be alocal function, let e be an edge incident on f, and let X, be the set of variables
(from the original factor graph) associated with e. If X, is contained in the union of the
variable sets associated with the edges incident on f other than e, then e is redundant. A
redundant edge can be deleted from a factor graph. (Redundant edges must be removed
one a time, because it is possible for an edge to be redundant in the presence of another
redundant edge, and become relevant once the latter edge is removed.) If all edges inci-
dent on a variable node can be removed, then the variable node itself is redundant and
can be deleted.

For example, the node containing x; alone is redundant in Fig. 27(b) since each local
function neighboring z; has a neighbor (other than ;) to which x; has been stretched.
Hence this node and the edges incident on it can be removed, as shown in Fig. 27(c).
Note that we are not removing the variable x; from the graph, but rather just a node
representing x1. Here, unlike elsewhere in this paper, the distinction between nodes and
variables becomes important.

Let x be a variable node involved in a cycle, i.e., for which there is a nontrivial path
P from z to itself. Let {y, f},{f,z} be the last two edges in P, for some variable node y
and some function node f. Let us stretch x along all of the variable nodes involved in P.
Then the edge {z, f} is redundant and hence can be deleted since both z and (z,y) are
incident on f. (Actually, there is also another redundant edge, corresponding to traveling
P in the opposite direction.) In this way, the cycle from z to itself is broken.

By systematically stretching variables around cycles and then deleting a resulting
redundant edge to break the cycle, it is possible to use the stretching transformation to
break all cycles in the graph, transforming an arbitrary factor graph into an equivalent
cycle-free factor graph for which the sum-product algorithm produces exact marginals.
This can be done without increasing the complexity of the local functions, but comes at
the expense of an increase in the complexity of the variable alphabets.

In the next subsection we present a method for coping with the cycles in a factor
graph based on forming a spanning tree for the graph. Each spanning tree is essentially
obtained by stretching variables and deleting redundant edges.

6.3 Spanning Trees

Recall that a spanning tree T' for a connected graph G is a connected, cycle-free subgraph
of G having the same vertex set as (G. In general, if G is not itself a tree, there are many
spanning trees for (¢, each of which is obtained from G by deleting some of the edges of
G. (If G has more than one component, then one could construct a tree spanning each
component, resulting in a “spanning forest” for (. However, we will not consider this
obvious extension further.)
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Let F'(S,Q) be a factor graph of one component, and for every variable node z of F
let n(z) denote the set of neighbors of z in F i.e., the set of function nodes having = as
an argument. Now, let 7" be a tree spanning F'. Since T' is a tree, there is a unique path
between any two nodes of T', and in particular between = and every element of n(z). Now
suppose z is stretched to all variable nodes involved in each path from z to every element
of n(z), and let F’ be the resulting transformed factor graph.

Theorem 5 Fvery edge of F' not in T is redundant and all such edges can be deleted
from F'.

Proof: Let e be an edge of F' not in T, let X, be the set of variables associated with
e, and let f be the local function on which e is incident. For every variable x € X., there
is a path in 7" from f to z, and z is stretched to all variable nodes along this path, and
in particular is stretched to a neighbor (in 7') of f. Since each element of X, appears in
some neighboring variable node not involving e, e is redundant. The removal of e does
not affect the redundant status of any other edge of F’ not in 7', hence all such edges may

be deleted from F’. 1

This theorem implies that the sum-product algorithm can be used to compute marginal
functions exactly in any spanning tree T' of F', provided that each variable z is stretched
along all variable nodes appearing in each path from x to a local function having z as
an argument. Intuitively, x is not marginalized out in the region of 7' in which z is
“involved.” To paraphrase the California winemakers Gallo, “we summarize no variable
before its time.”

6.4 An FFT

An important observation due to Aji and McEliece [1, 2] is that various fast transform
algorithms can be developed using a graph-based approach. In this section, we translate
the approach of Aji and McEliece to the language of factor graphs.

A factor graph for the DFT kernel was given in Section 2, Example 11. We observed
in (15) that the DF'T W;, of the sequence w,, could be obtained as a marginal function.

The factor graph in Fig. 28(a) has cycles, yet we wish to carry out exact marginal-
ization, so we form a spanning tree. There are many possible spanning trees, of which
one is shown in Fig. 28(b). (Different choices for the spanning tree will lead to possibly
different DFT algorithms when the min-sum algorithm is applied.) If we cluster the local
functions as shown in Fig. 28(b), essentially by defining

a(xa,yo) = (=1)"%,
b(ml,yo,yl) = (_1)1‘11/1(_]')3511/07
c(xo,yo,yl,yg) = (_1)zoy2(_j)z0ylﬂ%yo’
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Figure 28: The discrete Fourier transform kernel: (a) factor graph; (b) a particular spanning
tree; (c) spanning tree after clustering and stretching transformation.

we arrive at the spanning tree shown in Fig. 28(c). The variables that result from the
required stretching transformation are shown. Although they are redundant, we have
included variable nodes zo and x;. Observe that each message sent from left to right is
a function of three binary variables, which can be represented as a list of eight complex
quantities. Along the path from f to (yo,y1,y2), first x4, then 1, and then z, are
marginalized out as yg, y1, and y; are added to the argument list of the functions. In
three steps, the function w, is converted to the function Wj. Clearly we have obtained a
fast Fourier transform as an instance of the sum-product algorithm.

7 Conclusions

Factor graphs provide a natural graphical description of the factorization of a global
function into a product of local functions. As such, factor graphs can be applied in a wide
range of application areas, as we have illustrated with a large number of examples.

A major aim of this paper was to demonstrate that a single algorithm—the sum-
product algorithm—operating in a factor graph following only a single conceptually simple
computational rule, can encompass an enormous variety of practical algorithms. As we
have seen, these include the forward/backward algorithm, the Viterbi algorithm, Pearl’s
belief propagation algorithm, the iterative turbo decoding algorithm, the Kalman filter,
and even certain fast Fourier transform algorithms! Various extensions of these algo-
rithms; for example, a Kalman filter with forward/backward propagation or operating in
a tree-structured signal model, although not treated in this paper, can be derived in a
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straightforward manner by applying the principles enunciated in this paper.

We have defined the sum-product algorithm in terms of two basic function operations:
function product and function summary. The function product was defined in general
terms involving an arbitrary semigroup with unity. Likewise the summary operation was
defined in general terms as an operator that converts the projection of a function on a
subset of the coordinates of its domain into a function. An important contribution of
this paper is a clear set of axioms that such a summary operator should possess. The
flexibility obtained from defining these concepts in general terms is one reason for the
broad applicability of the sum-product algorithm.

We have emphasized that the sum-product algorithm can be applied to arbitrary
factor graphs, cycle-free or not. In the cycle-free case, we have shown that the sum-
product algorithm can be used to compute function summaries ezactly when the factor
graph is finite. In some applications, e.g., in processing Markov chains and hidden Markov
models, the underlying factor graph is naturally cycle-free, while in other applications,
e.g., in decoding of low-density parity-check codes and turbo codes, it is not. In the latter
case, a successful strategy has been simply to apply the sum-product algorithm without
regard to the cycles. Nevertheless, in some cases it might be important to obtain an
equivalent cycle-free representation, and we have given a number of graph transformations
that can be used to achieve such representations.

Another major motivation in writing this paper was pedagogical: we feel that many of
the topics presented in this paper can and should be taught in a unified manner using the
framework presented in this paper. After learning to apply a single simple computational
procedure, the student immediately has access to a wide variety of algorithms in different
application areas.

Factor graphs afford great flexibility in modeling systems. Both Willems’ behavioral
approach to systems, and the traditional input/output approach fit naturally in the factor
graph framework. The generality of allowing arbitrary functions (not just probability
distributions) to be represented further enhances the flexibility of factor graphs. Factor
graphs also have the potential to unify modeling and signal processing tasks that are often
treated separately in current systems. In communication systems, for example, channel
modeling and estimation, separation of multiple users, and decoding can be treated in a
unified way using a single graphical model that represents the interactions of these various
elements. We feel that the full potential of this approach has not yet been realized, and we
suggest that further exploration of the modeling power of factor graphs and applications
of the sum-product algorithm will indeed be fruitful.
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A Proof of Theorem 1

Assume that p(Xs) factors as in (2), i.e., p(Xs) = [[peq fE(XE), for some collection
of subsets of the index set S, where fr(Xg) is a non-negative real-valued function for all
E € Q. Let F(S,Q) be the corresponding factor graph. We must show that F2 satisfies
the local Markov property (10). Denote by n(x;) the set of neighbors of z; in F?.

Adopting the index/subset view of a factor graph, we consider an arbitrary but fixed
node 1 € S. Let (); C @ be the set of neighbors of ¢ in I, and let R; = @ \ @; be the
subset nodes that are not neighbors of ¢ in F. For every £ € R;, fg does not have z; as
an argument. We then write

p(Xs)
> e P(Xs)

[l5eo [E(XE)
> w: Eeq f5(XE)

zer, [p(XE) [1peq, [r(XE)
HEeRi fE(XE) Zz‘z HEeQi fE(XE)
= plailn(z;)).

plri]Xs \ {z:}) =

The latter equality is shown as follows. Let .J be an index set for the variables other than
z; and those in n(z;), and observe that for every F € Q;, fr has no variable of X; as an
argument. Then

2x, P(Xs)
p(ziln(zi)) = S S p(Xs)
HEth- fE(XE) ZXJ HEeRi fE(XE)
Eg;i HEeQi fE(XE) EX] HEeR,- fE(XE)
HEEQ,- J6(XE)
>0 peq, [6(XE)

Alternatively, we can argue as follows. Observe that the variables in Xz form a
clique in F2, and that fz(Xg) can be taken as a Gibbs potential function over this clique.
By assigning a unit potential function to all cliques of FZ that do not correspond to
some K € (), we obtain a collection of Gibbs potential functions over all of the cliques
of F2. Tt is well known (see, e.g., [21]) that any such collection of non-negative Gibbs
potential functions is linearly proportional to a probability distribution that satisfies the
local Markov property (10) and hence defines a Markov random field. I
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B Complexity of the Sum-Product Algorithm in a
Finite Tree

The complexity of the sum-product algorithm is difficult to analyze in general, depending
as it does on implementation-dependent details such as the manner in which local func-
tions are represented, the mapping from messages to functions and back, the available
storage, the complexity of multiplying elements in R, and of evaluating a summary, etc.
One way to measure complexity would be simply to count messages, in which case the
complexity of the sum-product algorithm would be 2| E| in a tree with || edges. However,
this does not account for the (in general, highly variable) complexity needed to compute
the values of the messages. In this section we give a simplistic complexity analysis for the
sum-product algorithm operating in a finite tree.

We will assume that all variable alphabets are finite, denoting the size of the alphabet
A; for z; by |A;|. We will assume that a local function f(Xg) is represented by a table
of |fe| = [licx |4i| values, and that function evaluation is performed by table lookup.
Furthermore, we will assume that all messages passed by the sum-product algorithm
describe the corresponding function by an ordered list of function values. We will assume
that the summary operator is defined in terms of a binary addition operation in a semiring
R(-,+). We will assume no capability to store partial results at a node, other than the
partial results involved in the computation of a particular message. At a node v, we
denote by o(v), x(v), and A(v) the number of additions, multiplications and local function
evaluations (table-lookups) required at v to generate all messages needed over the course
of operation of the sum-product algorithm.

At a variable node z;, the message p, ¢ sent to a neighbor f is—from (19)—simply
the component-wise product of messages received on all other edges. In particular, no
additions or local function evaluations need to be performed, hence

o(z;) = Az;) = 0.

For every outgoing message, there are (0(x;) — 1) incoming messages, each of length | A,|.
If O(x;) > 2, these can be multiplied together using d(x;) — 2 multiplies per component,
or |A;|(0(x;) — 2) multiplies in total. (Otherwise, if d(z;) < 2, no work needs to be done
at the variable node; the outgoing message is equal to the incoming message.) Over the
course of operation of the sum-product algorithm, this operation is done for each neighbor,
and since we assume no storage of partial results, the number of multiplies performed to
compute messages sent from z; is

| Al (9(:))(O(:) = 2)[A(:) > 2],

where we have used Iverson’s convention, described in Section 1, to express the condition
on the degree of z;. The marginal function for z; can be computed by multiplying the
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messages sent and received on any given edge at z;; this can be done using another |A;]
multiplies, so the total number of multiplies at z; is

X(x:) = |Ail(0(2:))(0(w:) = 2)[0(:) > 2] + |Ai = O (JA:|0*(w)) -

At a function node fg, we must perform multiplications, additions, and local func-
tion evaluations according to (20). For the message pf, . (2;) we must first compute
a table of values representing the product f(Xg) Ha:]eXE\{zi} [z, — g (2;), which can be
computed using no more than |f(Xg)|0(fg) multiplies, and | f(Xg)| local function eval-
uations. (Since messages received from leaf variable nodes are trivial, the actual number

of computations may be less than this value.) Since this must be done for each neighbor,
X(fr) <P (fe)|fel = & (fm) [T 1Al
t€ER
and
Mfe) = 8(f)lfel = 8(fe) [ 1Al
1€l
We must then summarize the multiple function values for each particular value that z;

can take on; this requires | fg|/|A;| — 1 additions per component, or | fz| — | A;| additions
in total. Since this must be repeated for each neighbor, we get

o(fe) = 0(fe)lfal = Y Al =0(fe) [1Al =D Al =0 (a<fE> 11 |Ai|)

tER t€ER t€ER tER

addition operations in total.

If we define the alphabet complexity a(v) a node v as |A;] if v = z; and ], 5 [Ad] if
v = fg, then the number of multiplications performed at v scales as

X(v) = O (a(v)?(v))

and, when v is a function node,

C Code-Specific Simplifications

For particular decoding applications, the generic updating rules (19) and (20) can often
be substantially simplified. We treat here only the important case where all variables are
binary and all functions (except single-variable functions) are parity checks (as in Fig. 8(b)
and in Fig. 23). This includes, in particular, low-density parity check codes [14] of the
previous subsection. We give the corresponding simplifications for both the sum-product
and the min-sum versions of the algorithm, both of which were known long ago [14]. We
begin with the latter.
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Min-Sum Updating

The min-sum update rule corresponding to (19) for the message 14—, 7 sent from a bit b
to a check J is

e e [ ELeD e

where p;p, 0 = 1,2, ... are the inputs into b from all other parity checks and where ¢ is
an arbitrary constant.

The update rule corresponding to (20) for the message pj_; sent from a parity check
J to a bit b is as follows. For the sake of clarity, we assume that .J checks two other bits
besides b. Then the rule is
{ p17-5(0) } . { min{415.7(0) + p12-.7(0), p1-(1) + pra—s (1)} (38)
/~LJ—>b(1) min{/ll—ﬂ(o) + /12—>J(1)7/~51—>J(1) + /12—>J(0)} '

Due to the arbitrary additive constant ¢, every message vector u can be collapsed to
a single real number

A= p(1) = pu(0). (39)
The sign of this number can be viewed as a decision about the value of the corresponding
bit (positive for 1 and negative for 0), while the magnitude of this number can be viewed
as an estimate of the reliability of this decision. The bit-to-check update rule (37) then
becomes

Mg = Z Aissh- (40)

The check-to-bit rule (38) becomes

My = (Hsign(AHJ)) min{[A.[}, (41)
where we have directly stated the general case for an arbitrary number of checked bits.
The first factor in (41), which is really an exclusive-OR operation, follows from noting
that the least-cost configuration is obtained by making individual decision about the other
bits and then setting b as needed. The second factor follows from noting that the cheapest
alternative with a different value for b is obtained by flipping the least reliable other bit.

Sum-Product Updating

The sum-product update rule (19) for the function p;_,; from a bit b to parity check J is

e = e | @
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where p;p, 2 = 1,2,... are the inputs into b from all other parity checks and where ~ is
an arbitrary nonzero scale factor.

The update rule (20) for the function pj_; from a parity check J to a bit b is as
follows. For simplicity we assume that .J checks two other bits besides b:

pi—s(0) | p1—7(0)p2—7(0) 4+ 1o (1)pa—s(1)
{ (1) } =1 { 117 (02 (1) + pr1g (1 )z (0) | (43)

Because of the (arbitrary, but nonzero) scale factor v, every function p can be col-
lapsed into a single real number

A2 u(0) /(). (44)

The bit-to-check update rule (42) becomes

Ay = HAi—>b- (45)

So far, the analogy between the min-sum rules and the sum-product rules is perfect.
What is missing is the sum-product analog to (41), i.e., the formulation of the check-to-bit
update rule (43) in terms of A. Towards that end, we first observe that the operation (43)
on the normalized difference

A2 p(0) — p(1) (46)

is (for the general case) given by

AJ—>b = ' (47)

But by using

A—-1
A= — 4
A+1 (49)
and
1+ A
A= ——

the desired check-to-bit update rule in terms of A consists in transforming all inputs A;_ s
into normalized differences A, s, applying (48), and transforming A, back to Aj_s.
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Application to Log-Likelihood Ratios

The update rules of the sum-product algorithm take a particularly interesting form ([27,
p. 83][16]) when written in terms of log-likelihoods

A= log(p(0)/p(1)) (51)
= log(A), (52)

where the logarithms are to the natural base e. The bit-to-check updating rule (45)
then becomes that of the min-sum algorithm (40). From (49) and (52), the normalized
difference can be expressed as

A
A = Ti (53)
M2 _ o—A2
TR (54)
= tanh(\/2), (55)

and the check-to-bit update rule (48) becomes

/\J7b = Qtanh_l (H tanh(/\LJ/Q)) . (56)

Note that (41) may be viewed as an approximation of (56).
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