CSC 121: Computer Science for Statistics

Radford M. Neal, University of Toronto, 2017

http://www.cs.utoronto.ca/~radford/csc121/

Week 6

Random Numbers and Their Uses

Random variation is a big part of what statistics is about. So it’s natural that R

has facilities to create its own random variation — to generate random numbers.

Random numbers have many uses (and not just in statistics):

e Simulate random processes, such as how a disease epidemic might spread

between people.

e See how the results of some statistical method vary when the data it is

applied to vary randomly.
e Compute things using “Monte Carlo” methods.

e Make interactions with a user have a random aspect — we don’t want a video

game to behave the same way every time we play!

Generating Random Numbers with Uniform Distribution

One simple kind of random number is one that takes on a real value that is

uniformly distributed within some bounds.

You can get such numbers in R using the runif function. It takes as arguments
the number of random numbers to generate, the low bound, and the high bound.

We'll try generating one at a time here:

> runif(1,0,10) # one random number in (0,10)
[1] 3.195956

> runif(1,0,10) # another one, not the same
[1] 5.551191

> runif (1,0,10) # ... and another

[1] 1.165307
> runif(1,100,200) # one from a different range

[1] 182.0236

The random numbers generated are supposed to be independent — eg, which one

we get the second time is unrelated to what the first one was.

R’s Random Numbers Aren’t Really Random

Computers are carefully designed to not behave randomly.

Some computers have special devices for producing random numbers that are
really random. This is useful for cryptography (you want a really random key for

your code, so nobody else can guess it).

But for most purposes we don’t actually want real random numbers. They’re too

hard to generate, and if we use them, we can’t reproduce our results another day.

For example: Imagine that after running your program for a long time, it stops
with an error message, indicating it has a bug. You think you’ve now fixed the
bug. But how do you verify that you’ve really fixed it if you can’t reproduce the

run that led to the error?

So most computer “random” numbers are really “pseudo-random” — numbers
that look random for most purposes, but are actually generated by an algorithm
that isn’t random at all, so if it is run again, it will generate exactly the same

numbers.

An Example of a Pseudo-Random Generator

Here’s one simple way to generate a series of pseudo-random numbers, uniformly
distributed over the integers 1, 2, ..., 30.

> nxt <- 1; series <- c()
> for (i in 1:200) { nxt <- (nxt * 17) %% 31; series <- c(series,nxt) }

Here’s a plot of the resulting series:

S o o o o o o o
o o o o o o
o o o o o o
o o o o o o o
o o o o o o o
8 o o o o o o o
o o o o o o o
o o o o o o
o o o o o o o
o o o o o o o
S o o o o o o o
o o o o o o
o o o o o o o
® o o o o o o o
@ o o o o o o o
g,‘-‘_’—o o o o o o o
o o o o o o o
o o o o o o
o o o o o o o
o o o o o o
@ 4 o o o o o o o
o o o o o o
o o o o o o o
o o o o o o o
o o o o o o
[ToR o o o o o o o
o o o o o o
o o o o o o o
o o o o o o o
o o o o o o
S T T T T T
0 50 100 150 200

Inde;

It looks random, except that it repeats with period 30. Similar generators can

have much longer periods, however.

Setting the Random Seed

R uses a more sophisticated pseudo-random generator, but it also is deterministic,

and will reproduce the same sequence if restarted with the same “seed”.

For example:

> set.seed(123)
> runif (1)

[1] 0.2875775
> runif (1)

[1] 0.7883051

> runif (1)

[1] 0.4089769

> set.seed(123)
> runif (1)

[1] 0.2875775
> runif (1)

[1] 0.7883051

> runif (1)

[1] 0.4089769

For serious work, you should set the seed, so you’ll be able to reproduce your results.

The sample function

The call sample(n) will generate a random permutation of the integers from

1 to n, as illustrated below:

> set.seed(1)
> sample (10)

[1] 3 4 5 7 2 8 9 610 1
> sample (10)

[1] 3 2 610 5 7 8 4 1 9
> sample(10)

[1] 10 2 6 1 9 8 7 5 3 4

With other kinds of arguments, sample can do other things as well, including

sampling with replacement.

Generating Random Vectors

The runif function can generate a whole vector of random numbers at once. The

first argument of runif is the number of random numbers to generate.

For instance, here we plot 500 random numbers uniformly distributed from 0 to 1,

using the command

> plot(runif (500))

o
~ 7 o o o [eXe} -} ¢}
000 o ° o o ©,0° % o@©° © o
o 69 o O o
o o 3 oo © o o o
% © @ o0 o o o o o o
o o0 o° &o ° o o O
o
o e o o 9 o & ° ° ° 0 &0°
o o o 0o o ° o 0 0° ° o
o
o o ° o o 0O° o ® o Oo o o ooo
&o o o o %0 o o [e) o°°o
° o o % 0o o0 0% o o o o o o %%
& ® o o ° °" 5) Q
© | % 40 _© % o, o o @ 50 °
= S £° o " o RS, °o
3 s ° oOO °co o ©°%o, oo ©° ° o
= 00 © o % ©
= @ °0 ,° o 0, 0 0 o o é; o 93 (o) ° o
] ocboo o ©O ° °o& o
< | o o oo o _O 0o O o o o0gQg
o ® 000 ® o o o
o ® o o & ° o o ©
o o o 8 ® o ° o)
o 0° o % o 000
o o8 o o o o 02 © O 0% o
°© % 5o o %°%0 @ S o o @ o
o
o &%, o o oo °o o ® ° ® Lo © %o,
_ o o @ o
o o o ° o o o o o ®
o®PB oo ® o (o) o o ° 00y P
® o0 ° 0© ? o 8
o o @0 o O© 0@ © B, ° "o
o o o OO@O o c?
oo o o0 °o ° o
e 4 ° o) ® oo °)
o
T T T T T T
0 100 200 300 400 500

Index

The Problem with Plotting Rounded Data Points

Recall the “iris” data set of width and length of petals and sepals in three species
of Iris. It is stored in a special kind of list called a “data frame”, which also looks

sort-of like a matrix, which we’ll talk more about later.

Here’s a scatterplot of two of the variables (species marked by colour):

plot (iris$Sepal.Width, iris$Petal.Width, col=iris$Species,
xlab="Sepal Width", ylab="Petal Width")

< o o
o o o
o ooo o
o o o
5 o oo o
N o o o o o
o oo
O 0O0OO0OO0OO0O
o o
o o oo
s 2 - o o ooo0o0o0
2 0O 00O0O0O0O
% o o ooo0o0
I 00O o
& oo
@ 40 o000 o0o0
o o
S (o]
o 00 o0 o
o o oo o
O0O0O00D0DO0O0ODOO O ©
oo o o
T T T T T
2.0 2.5 3.0 3.5 4.0

Sepal Width

Solving the Problem with Random Jitter

Because the data is rounded to one decimal place, many of the dots in the
scatterplot are on top of each other. To see all the data points, we can add
random “jitter” to each data point before plotting:

plot (iris$Sepal.Width + runif(nrow(iris),-0.05,+0.05),

iris$Petal .Width + runif (nrow(iris),-0.05,+0.05),
col=iris$Species, xlab="Sepal Width", ylab="Petal Width")

0 o
N 5 8
o o
o o)
o 0 o®o o)
o
°© & o o
o _| o
9Vl (o) 8 o © ©
o %o o
0 o 0 %o @
© (o] ® o O
o)
-E L‘,_)'_ [o) o o© O(gbcp fo)
o (@] OOOO
2 o & ©
= ® o @0%0
8 %5 0
d';) o O o
o | © °c ©° o O
— [eX]
o
2 o]
° 88 @ og@éﬁo I
ooooog% %o gOQ) 0°
o _|
o T T T T T
2.0 25 3.0 3.5 4.0

Sepal Width

Making Random Choices

Often, we want to make a random choice, with certain probabilities for doing

certain things.

If we have a binary choice (to do or not do something), we can compare a random

number that’s uniform over (0,1) to the desired probability.

For example, at some point in a computer game, we might want to kill the player

and end the game with probability 0.15. We can do it as follows:
if (runif(1) < 0.15) stop("You’re dead. Game over!")

Why does this work?

Suppose instead we have a three-way choice — do A with probability 0.15, do B
with probability 0.4, or do C with probability 0.45. (Note that these three
probabilities add to one.)

Could we generate one random number uniform over (0, 1) and use it to make this

choice?

Simulating a Random Walk

One well known “stochastic process” is a random walk on the integers, in which
we start at 0, and at each time step thereafter we randomly go to the position one

above or one below our current position, with probability 0.5 for either direction.

Here’s an R function to simulate a random walk:

random_walk <- function (steps) {
position <- numeric(steps+1)
for (i in 1:steps) {
if (runif(1) < 0.5)
position[i+1] <- position[i] + 1
else
position[i+1] <- position[i] - 1
+

position

40

20

-20

—40

40

20

-20

40

40

20

-20

-40

Three Random Walks

200 400 600 800 1000
| | | | |
200 400 600 800 1000
| | | | |
200 400 600 800 1000

Environments

An R environment is a collection of variables and their current values.

The global environment contains variables that are created when you assign to a

name in a command typed at the R console (or as if typed in an R script).

For example, typing the command below creates (if it didn’t exist already) a

variable in the global environment named fred:

> fred <- 1+2

Calling a function creates a local environment used for just that call. Assignments
inside the function create or change variables in that environment — below, the

assignment to fred inside f changes fred in the local, not global, environment:

> f <- function (x) { fred <- 2*x; fred+1 }
> fred

[1] 3

> £(100)

[1] 201

> fred

[1] 3

Listing and Removing Variables

You can see what variables exist in the environment that is currently being used

with the 1s function, which returns a vector of strings with the names of variables.
You can remove a variable from the current environment with rm.

Here’s an example (which assumes you haven’t already defined other variables in

the global environment):

> a <-1

> b <= 2

> 1s()

[1] "a" "Db"
> rm(a)

> 1s()

[1] "Db"

> a

Error: object ’a’ not found

Note: After x <= "b", calling rm(x) removes variable x, not variable b.

Function Arguments in the Local Environment

When a function is called, all its arguments become variables in its local
environment. Their values are what is was specified in the call of the function,

or their default values if they were not specified.

We can see this by printing the result of 1s inside a function:

> f <- function (x,y=100,z=1000) { print(ls()); x +y + z }
> £(7,z=10)

[1] "x" "y" "z"

[1] 117

If we create new variables by assignment, they also are in the local environment:

> g <- function (x,y=100,z=1000) { a <- x + y + z; print(1s()); a }
> g(7)
[1] "a" "X" "y" "Z"

[1] 1107

The global environment isn’t changed when local variables are created for

arguments or by assignment. So after doing the above, in a new R session, we see

> 1s()
[1] llfll llgll

Local and Global Variable References

When you reference a variable inside a function, it refers to the local variable of

that name, if it exists, and if not, to the global variable of that name, if it exists.

Here’s an example:

> f <- function (xyz,def) {

+ print (abc) # refers to the global variable ’abc’

+ print (xyz) # refers to the local variable (argument) ’xyz’
+ print (def) # refers to the local variable (argument) ’def’
+ xyz + def + abc

+ }

>

> abc <- 1

> def <- 2

>

> £(200,3000)

[1] 1

[1] 200

[1] 3000

[1] 3201

Changing Local and Global Variables Inside a Function

Assigning a value to a name with <- (or with =) from inside a function creates or
changes the local variable with that name. Assigning a value to a name with <<-
creates or changes the global variable with that name. Here’s an example:

> g <- function () {

+ x <- a # creates a local variable ’x’, with value from global ’a’
+ a <- 10 # creates a local variable ’a’; global ’a’ is not affected
+ b <<- 300 # changes the global variable ’b’; doesn’t create a local ’b’
+ a+ b+ x # here, ’a’ refers to the new local ’a’, not the global ’a’
+ }

> g()

Error in g() : object ’a’ not found

> a <- 100

> b <= 200

> g()

[1] 410

> a

[1] 100

> b

[1] 300

> X

Error: object ’x’ not found

Assigning to Arguments Doesn’t Change Them

Since assignments with <- inside a function change only the local environment,

assigning to a function argument doesn’t change what the caller passed.

For example:

> h <- function (x) { x[1] <- 0; sum(x) } # sum all but first element
> a <- c(3,4,1,7)

> h(a)

[1] 12

> a # the global variable ’a’ was not changed

[1] 3417

> x <- ¢(10,20,30)

> h(x)

[1] 50

> X # global ’x’ unchanged - not the same as the local ’x’!
[1] 10 20 30

Exception: R has some “special” functions that do alter their arguments — for

example, as we’ve seen, rm(x) actually removes x!

When and How to Use Local and Global Variables

When writing a function, you should try to
e Separate what the function does from how it does it, so someone using the
function only needs to understand the “what”.

e Make what the function does be easy to describe and understand.

e Make what the function does be general, so it will be useful in many contexts.

Functions should usually get input from their arguments, not global variables —
they’re then more generally useful, as it’s easy to use different arguments in calls.
Functions should usually not assign to global variables. Putting intermediate
results in global variables makes “how” the function works be visible. Returning

information in global variables makes it hard to use the function in a general way.

There are exceptions:
e If many functions all refer to the same data, having them all refer to a global

data variable may be easier than passing a data argument to all of them.

e Assigning to a global variable can be a convenient way to keep track of overall

counts of how often something happended (eg, number of errors of some sort).

e Assigning some intermediate result to a global variable may help when

debugging a program (but take it out once the program is working).

